critical velocity goes to zero. If one uses their formula for E when a vortex is near the wall [their Eq. (14)], but uses the value I_1 [Eq. (8)] which assumes that the vortex was created at the wall, then the limiting value of E/I_1 for a ring at the wall is $\kappa/2\pi a \simeq 1.6 \times 10^4$ cm/sec for $\kappa = h/m$ and a (the core radius) = 10^{-8} cm. As pointed out by Vinen, this eliminates the problem, even classically, that the critical velocity for the creation of vortex rings at the wall is predicted to be zero. However, the value $\kappa/2\pi a$ is a maximum value of E/I_1 for rings near the wall and should not represent a critical velocity.

In a quantum calculation Fetter⁹ showed that the energy of a ring does not go to zero as it approaches the wall. If one does the injustice of dividing the quantum value of E by the classical value I_1 , one gets $E/P + (11/12)\kappa/8\pi b$, where b is the distance from the ring to the wall. Again this is a maximum as $b \to 0$, but the result is not meaningful since I_1 should also be calculated quantum mechanically. Because the impulse required to create a ring is not unique, some care should be exercised before one substitutes I for P in Landau's formula.

The author wishes to thank Dr. E. Hammell,

Dr. W. Keller, Professor B. Sonnerup, and Professor J. N. Kidder for helpful discussion on hydrodynamics.

³Yu. G. Mamaladze, in <u>Proceedings of the Ninth Inter-</u> national Conference on Low Temperature Physics, edited by J. G. Daunt, D. O. Edwards, F. J. Milford, and M. Yaqub (Plenum Press, New York, 1965), pp. 281-283.

⁴W. F. Vinen, in <u>Quantum Fluids</u>, edited by D. F. Brewer (North-Holland Publishing Company, Amsterdam, 1966), pp. 104-106.

⁵J. C. Fineman and C. E. Chase, Phys. Rev. <u>129</u>, 1 (1963).

⁶Lin, Ref. 2, Eq. (1.A5).

⁷For a clear discussion of this method, see R. W. Sears, <u>Theoretical Aerodynamics</u>, Pt. 1: Introduction to Theoretical Hydrodynamics (Graduate School of Aeronautical Engineering, Cornell University, Ithaca, New York, 1957), pp. 4.16-4.24.

⁸G. W. Rayfield and F. Reif, Phys. Rev. <u>136</u>, A1194 (1964); see p. A1201.

⁹A. L. Fetter, Phys. Rev. <u>138</u>, A429 (1965).

INFRARED OPTICAL PROPERTIES OF VANADIUM DIOXIDE ABOVE AND BELOW THE TRANSITION TEMPERATURE

A. S. Barker, Jr., H. W. Verleur, and H. J. Guggenheim Bell Telephone Laboratories, Murray Hill, New Jersey (Received 1 November 1966)

We have measured the infrared reflection and transmission spectra of crystals of VO₂ both above and below its transition temperature $T_t = 68$ °C. Since the work of Morin¹ which showed the transition as an abrupt change of resistance there have been many recent speculations on the nature of the transitions in 3dtransition-metal oxides^{2,3}: whether they are metallic \leftrightarrow antiferromagnetic, and/or metallic --- semiconducting, and whether the conduction in the more insulating state below T_t is band-type or hopping-type. In a recent communication Adler⁴ has discussed a model for Ti₂O₃ with a gap which goes rapidly to zero at T_t because of an exchange interaction. A somewhat different model⁵ gives a rapidly disappearing gap as a result of a crystalline structure distortion. We have investigated the conduction properties using analysis of infrared reflection and transmission, and we present the first Hall data in VO₂ both above and below T_t . We have also examined the question of lattice stability and conclude that there is not a Cochran-type ferroelectric mode⁶ connected with the transition. The crystals used were grown by decomposing V₂O₅ in a temperaturedifference system. Chemical analysis showed the stoichiometry to be VO_x with $x = 2.01 \pm 0.01$.

Group theory applied to monoclinic (m) VO₂ shows that in the long-wavelength limit there are eight infrared-active modes for the electric vector \vec{E} parallel to the b_m axis and seven infrared-active modes for \vec{E} in the plane perpendicular to the b_m axis. In addition, there

¹H. Lamb, <u>Hydrodynamics</u> (Dover Publications, New York, 1945), Sec. 152.

²C. C. Lin, in <u>Liquid Helium</u>, <u>Proceedings of the</u> <u>Enrico Fermi International School of Physics</u>, <u>Course</u> <u>XXI</u>, edited by G. Careri (Academic Press, Inc., New York, 1963) p. 99.

are 18 Raman-active modes. In VO₂ for $T > T_t$ (rutile structure r) there are three infraredactive modes perpendicular to the c_r axis and one parallel to the c_r axis.

The reflectivity spectra were measured in the usual manner⁷ both below and above T_t , as well as at a temperature near T_t . The range of frequencies covered was from 100 to 20000 cm⁻¹. The spectra at room temperature were measured with all possibly distinct orientations of the crystal. However, distinct spectra were obtained only with \vec{E} parallel or perpendicular to the a_m axis. Figure 1 shows the $E \parallel a_m$ spectra. The lack of a unique $E \parallel b_m$ spectrum below T_t leads to an interesting conclusion concerning the crystal structure. At T_t , the crystallographic transformation is⁸

$$a_m \leftarrow 2c_r, \ b_m \leftarrow a_r, \ c_m \leftarrow a_r - c_r.$$

Furthermore, the distortion is slight, so that $|c_m|_T < T_t \simeq |a_r - c_r|_T > T_t$. If one views the crystal in the low-temperature phase in reflection using a polarizing microscope, one observes

a domain pattern.⁹ The reflectivity measurements suggest that these domains are the result of the monoclinic b_m axis choosing one a_r axis to point along in one region and choosing the other a_r axis in another region when the crystal is cooled through T_t . Typical domains are about 40 μ across the narrow dimension; thus we have not been able to measure the reflectivity spectrum of a single domain.

We have used the classical oscillator expression for ϵ , the dielectric function, to fit the reflectivity spectra below and above T_t . The oscillator parameters for $E \parallel a_m$ and $E \perp a_m$ are listed in Table I. We have fitted nine modes to the $E \parallel$ spectrum. We assume that the highest frequency "mode" simulates the band-to-band transitions. Newman, Lawson, and Brown³ have observed an activation energy in conductivity measurements of 4000 cm⁻¹, suggesting a gap at 8000 cm⁻¹. However, activation energies as low as 1600 cm⁻¹ have also been observed.¹⁰ Preliminary transmission measurements on our single-crystal samples show an onset of absorption near 2500 cm⁻¹ which may

FIG. 1. Reflectivity of VO₂. The solid curve is a fit for $T < T_t$ using eight phonon modes and one band-structure mode. The crosses and squares show the data above T_t . The squares are low because of sample cracking; how-ever, they illustrate the monotonic rise expected of free carrier reflection. The triangle points were taken on cooling. Because of thermal hysteresis, $T_t \simeq 63^{\circ}$ C for this run.

	$E \perp a_m$			E a _m		
Mode no.	(cm^{-1})	$4\pi ho$	γ	(cm^{-1})	$4\pi ho$	γ
		$T = 26^{\circ}$ C, p	rimitive cell V4O8	(monoclinic)		
1	189	0.54	0.012	227.5	0.1	0.02
2	270	13.0	0.07	285	3.3	0.06
3	310	7.0	0.05	324	1.95	0.018
4	340	0.7	0.024	355	7.4	0.08
5	505	3.1	0.07	392.5	1.0	0.03
6	600	4.8	0.074	478	0.2	0.08
7	710	0.15	0.06	530	0.65	0.045
8	10 000	1.3	0.4	700	0.25	0.055
9				10000	1.3	0.4
	$\epsilon_{\infty} = 10.0$, $\epsilon_0 = 40.6$			$\epsilon_{\infty} = 9.7$, $\epsilon_0 = 25.9$		
		$T = 80^{\circ}$	C, primitive cell $E \parallel c_{\gamma}$ (rutile) c_{γ}^{-1} , $\omega_{c} = 10000$	V_2O_4		

Table I. VO₂ classical oscillator parameters for the dielectric function above and below T_t .

be the band gap. The remaining optical phonon modes have strengths typical of ionic crystals.

Because of the domain problem, the $E \perp a_{m}$ spectra can exhibit up to 15 optical phonon modes with strengths which depend on the angle between the E vector and the dipole moment of the normal modes, some of which lie along b_m and some of which are perpendicular to b_m . While there is much fine structure, the data are adequately fit by the seven modes listed in Table I plus a band-structure mode near 10000 cm⁻¹ similar to that for $E \parallel a_m$. Neither polarization shows a strong low-frequency mode such as might be expected if the transition were caused by a Cochran-type infrared-active mode, though such a mode may exist above T_t and change its character completely below T_t . We note, however, that the ion shifts⁸ at T_t are typical of a $(101)_{\gamma}$ or a $(011)_{\gamma}$ zone-boundary phonon and thus not likely to show up even for $T > T_t$ in the first-order spectrum.

Figure 1 shows a typical reflectivity spectrum for $T > T_t$. Two samples were used for this run. After the long-wavelength data were taken, the sample appeared to be cracked, which probably caused the discontinuity between the low- and the (more reliable) high-frequency measurements. The spectra for all other polarizations with $T > T_t$ show similar high reflectivity typical of metallic or free carrier behavior, except that the reflectivity spectrum for $E \perp c_{\gamma}$ (not shown) has some additional structure near 660 cm⁻¹. We hesitate to interpret

this as being due to an optical phonon in the rutile phase because it was not reproduced in all other crystals we measured.

We list in Table I the dielectric-function parameters ω_b and ω_c , the plasma and collision frequencies, where ϵ (carriers) = $-\omega_b^2 \epsilon_{\infty} / (\omega^2 - i\omega\omega_c)$ for one $E \parallel c_r$ spectrum. For $T \simeq T_t$ we see both the semiconducting-phase phonons and the metallic-phase phonons and the metallic-phase plasma. We interpret this spectrum (Fig. 1) as arising from the coexistence of regions of both phases. Table II shows the Hall effect data on samples from the same growth batch as those studied in the infrared. The only measurement of a Hall voltage detectable above noise (for $T > T_t$) gives $n \sim 30 \times 10^{20}$ electrons/ cm³. This represents only 0.1 electron per vanadium ion and raises the question of whether we actually have simple "metallic" conductivity. Proceeding, however, and using $n \sim 30$ $\times 10^{20}$ combined with the infrared results, we deduce an optical mass of $m^* \sim 0.5 m_e$ and an optical mobility of $\mu_{\rm opt} = e/\omega_c m^* \sim 2 \ {\rm cm^2/V \ sec}$ for the metallic phase.

The d.c. mobility in the semiconducting phase (Table II), though small, is many orders of magnitude larger than in NiO, a hopping-type conductor.¹¹ Rough fits to the infrared free-carrier absorption measured by transmission at 25°C in the 1000- to 5000-cm⁻¹ region combined with the Hall measurements suggest that m^* is greater than m_e , and may be as large as $4m_e$. Recent nuclear magnetic resonance

	Table II. Hall effect and resistivity of VO_2 .									
Sample	Temperature (°C)	Current direction	ρ (Ω cm)	$n = 1/R_{\rm H}c$ (10 ²⁰ cm ⁻³)	$\mu (cm^2/V sec)$					
78 78 80 80 80 80	22 80 22 81 22 79	$ \begin{array}{c} {}^{\perp}a_{m} \\ {}^{\perp}c_{\gamma} \\ {}^{\perp}a_{m} \\ {}^{\perp}c_{\gamma} \\ \ a_{m} \\ \ c_{\gamma} \end{array} $	$1 \\ 0.000 14 \\ 1.2 \\ 0.000 24 \\ 1.4 \\ 0.000 13$	0.09^{a} >23 0.09^{a} >17 0.086^{a} $\sim_{30^{a}}, b$	0.7 >19 0.6 >15 0.52 ~16 ^b					

Table II. Hall effect and resistivity of VO₂

^aHall voltage corresponds to electrons.

^bFactor of 2 uncertainty.

measurements¹² show that VO₂ does not become antiferromagnetic at T_t . Our crystals show a constant magnetic susceptibility of 0.88×10^{-6} emu/g from room temperature down to 100° K, where a Curie-law behavior sets in ($T_c \sim 0^{\circ}$ K) which may be due to impurities. It appears then that a gap opens up on cooling through T_t causing a transition to a nonmagnetic semiconducting phase.

The authors wish to thank G. E. Smith and D. A. Kleinman for helpful conversations and R. C. Sherwood for measuring the magnetic susceptibility. hold Publishing Corporation, New York, 1959), Chap. 14.

²T. Kawakubo, J. Phys. Soc. Japan <u>20</u>, 516 (1965).

³C. H. Neuman, A. W. Lawson, and R. F. Brown, J. Chem. Phys. <u>41</u>, 1591 (1964). ⁴David Adler, Phys. Rev. Letters 17, 139 (1966).

⁵David Adler and Harvey Brooks, Phys. Rev., to be published.

⁶W. Cochran, Advan. Phys. <u>9</u>, 387 (1960).

⁷W. G. Spitzer and D. A. Kleinman, Phys. Rev. <u>121</u>, 1324 (1961).

⁸Georg Andersson, Acta. Chem. Scand. <u>10</u>, 623 (1956). ⁹P. J. Fillingham and H. J. Guggenheim, private communication.

¹⁰H. Takei and S. Koide, J. Phys. Soc. Japan <u>21</u>, 1010 (1966).

¹¹D. P. Snowden and H. Saltsburg, Phys. Rev. Letters <u>14</u>, 497 (1965).

¹²J. Umeda, H. Kusumoto, K. Narita, and E. Yamada, J. Chem. Phys. <u>42</u>, 1458 (1965).

¹F. J. Morin, Phys. Rev. Letters <u>3</u>, 34 (1959); see also <u>Semiconductors</u>, edited by N. B. Hannay (Rein-