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be obtained by using 77 2 for 0p and (Zmel*))” 2
for p, with m near to the true mass of a He®
atom. Then Eq. (2) becomes

I"B ~ (€5EF)”2. (3)

Consequently, for large p, there is no cutoff,
and the quasiparticles are like real particles
and are relatively well defined in the sense that
1"13 < €p. ,

The region in which 1"5 is comparable to €p
and the quasiparticles are not well defined de-
pends upon the way in which I'yj varies between
the two limits given by Egs. (1) and (3), and
this requires a more detailed calculation. A
smooth interpolation suggests that I'5/€p may
not be greater than 1 and so, for example, the
cut-off factor (2/m)tan~'(ep/T'p) used by Mo-
rel and Noziéres® may not be less than 0.5.
Although this would have some consequences
for the effective interaction, presumably they
would be less drastic than those found by Co-
hen and Abrahams,! particularly since inter-
mediate states of quite high momentum are im-
portant for scattering in relative D states.

These considerations do not allow a firm con-
clusion about the effects of quasiparticle life-
times but they do indicate the necessity of a
more detailed calculation.

Finally, in the high-momentum approxima-
tion which has been used, the mean free path
is about 3 A which is of the same order as the
range of the van der Waals force so that colli-
sions of three or more particles are important

in determining 1'"5 for 3 2E p. The elementary
theory of dense gases® indicates that these ef-
fects would increase I'p by about 50%. The
same problem also arises in the calculation

of A since, in Eq. (1), T{ should be regarded
as the lifetime of a quasiparticle rather than

a real particle. This may be a significant source
of the disagreement® between the independent-
pair approximations and experiment.

This Letter had its origin in a conversation
with Dr. J. Weneser and I have profited from
discussion with him and with Dr. S. Kahana and
Professor R. E. Peierls.

TWork performed under the auspices of the U. S.
Atomic Energy Commission.
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We have measured the momentum relaxation
time of ions in liquid helium II by a microwave
technique. This new information, in combina-
tion with existing data on ion mobilities, makes
it possible for the first time to evaluate the
effective masses of the carriers.!

The effective mass of the positive ion is de-
termined to be tens of helium masses and to
be temperature-dependent, and its known prop-
erties can be given a consistent interpretation
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in terms of the electrostriction model? and sim-
ple hydrodynamic reasoning. For the negative
carrier, our data indicate an effective mass
larger than that of the positive ion, and thus
clearly rule out any model of the nearly-free-
electron type.® The results are not inconsis-
tent with the bubble model.*

Our experiment involved a measurement of
the microwave conductivity due to a collection
of ions introduced into a reflection cavity, res-
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onant at approximately 9.3 GHz. Similar tech-
niques have previously been applied to the study
of carriers in gases® and solids.® The experi-
ment is most simply analyzed in terms of a
time-averaged Langevin equation (sometimes
referred to’ as “the equation of motion for the
drift velocity”). The equation is

- = dv v)
= = K — —

F=e8 M(dt+'r : 1
Here 7 and M * are a phenomenological relax-
ation time and an effective mass, respective-
ly. For the case of a dc field, this equation
leads to the familiar result

V= u(O)_c‘;= (e T/M*)-g. (2)

When the field varies in time as e?@!  the drift
velocity becomes

V= ()& ={p(0)8/[1 + (w2} (1 ~iwT), (3)

where p(w) is the mobility at frequency w.
When a sample of carriers is introduced in-
to a microwave cavity, the (complex) reflection
coefficient, T, of the cavity will change by an
amount proportional to the (complex) mobility.

A measurement of the ratio of the imaginary
part of T, r;, to the real part, T, yields w7
directly. The effective mass can then be ob-
tained from the measured dc mobility by use
of Eq. (2). Alternatively, if I'; cannot be mea-
sured, w7 can be obtained from a measurement
of Iy alone, if all parameters determining the
absorption (I'y) signal are known except the
factor [1+ (w7)?] in (3). We have been forced
to use this second, and less reliable, method
because of a very high level of noise and pick-
up when our apparatus was made sensitive to
dispersion (T';).

The reflection cavity is contained in one arm
of a two-bolometer bridge (homodyne) spectrom-
eter, permitting measurement of the complex
reflection coefficient.® The cylindrical cavity,
which is used in the TE,,, mode, is shown in
Fig. 1. A 50-mCi Po?!° @ emitter produces
ionization in the extension tube, which is fab-
ricated of copper rings, insulated from each
other, and is beyond cutoff for 3-cm microwaves.
A dc field in the source region determines which
polarity ion is studied. A 1-kV peak-to-peak
square wave, applied between successive rings
in the extension tube, chops the ion beam. The
carriers are then drawn through the cavity by
dc potentials applied to the rings making up
the walls of the cavity. The iris plate, at the

top of the cavity, is insulated from the cavity
walls and the coupling wave guide, and is used
as a current collector. The output of the bo-
lometer detectors is fed to a narrow-band am-
plifier and phase-sensitive detector, whose
reference signal is derived from the same source
as the beam-chopping square wave. In this
way the spectrometer is made sensitive to changes
in the cavity reflection coefficient arising from
introduction of the ions.

The change in the real part of the reflection
coefficient due to the ions, which is the quan-
tity that we measure, can be written in the form?®

21Q e (0) fn (§)§m2(¥)dsv

or =
»

(4)

w[1+ (wT)?] fgmz(;)d%f

Here @, is the unloaded @ of the cavity, and
n(T) and 8,,(T) are, respectively, the density
of ions and the microwave electric field at a
position T in the cavity. To calculate wT, we
had to determine the density distribution of
the ions in the cavity. The fact that the iris
current was measured greatly simplified this
problem. The dc field distribution in the cav-
ity was studied in an electrolytic tank, and from
this measurement the charge distribution (in-
cluding space-charge effects) was calculated.
The @ of the cavity was measured during each
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FIG. 1. Cross section of microwave cavity. The
square of the microwave electric field inside the
dashed ellipse is larger than half-maximum.
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run. All other factors relating 6T to the de-
flection of the output recorder of the spectrom-
eter were also determined, and were checked
to fair accuracy by use of the cavity and spec-
trometer in an electron spin-resonance mea-
surement. Thus the only unknown quantity in
Eq. (4) is w7, which can then be determined.

In Fig. 2 we plot the quantity

* o e . ,J,(O) _ 1/2— o
" "~ w(0) <“r(w) 1) =e(wT)/wu(0)=M* (5)

as a function of temperature for positive ions.!°
The error bars include allowances for all sources
of error except in the values of u(0) and the
sensitivity of the spectrometer, which we be-
lieve to have been constant, but uncertain by
+15%. An error in this quantity would shift

all the points, but would not greatly alter the
shape of the curve.

Figure 2 also shows the experimental data
for the negative carrier. No useful points were
obtained above 2°K, where the mobility is low,
or below 1.7°K, where the negative current drops
to very low values.!

The positive-ion data can apparently be un-
derstood in terms of the electrostriction mod-
el. In this model the Coulomb field around a
point charge causes a pressure (and density)
gradient in the vicinity of the charge. At some
distance R from the ion, the pressure equals
the melting pressure, P,,(T). Inside R the he-
lium is solid. R can be calculated using the
known elastic properties of liquid helium. An
approximate expression, sufficiently accurate
for the present discussion, is

R={[(e-1e?)/[8re*(P ‘Po”}”"‘- (6)

Here € is the dielectric constant of liquid he-
lium, and P, the ambient pressure.

At low temperatures, where p, <pg=p, we
may calculate the effective mass of such a sphere
using inviscid hydrodynamics. The usual re-
sult,?

M*=M +%psx§4ﬂR3 (T < TX) (7)

predicts

* = M .
M*=(47+13) He
Here M is the mass of the solid sphere of ra-
dius R. At temperatures near T), on the oth-
er hand, where the mean free path of the ele-
mentary excitations is small compared to R,
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FIG. 2. The experimental quantity, m*, in units of
the helium atomic mass versus temperature for posi-
tive and negative ions. Expression (7) is shown by the
solid lines in the low-temperature region for R =5.8 A
and for R=R(P,,) evaluated from (6). Expression (11)
with M* evaluated from (8) is shown by the solid lines
at higher temperatures for the same radii. A dashed
line connects the solid lines in the temperature region
where the contribution of the viscosity to the effective
mass is uncertain. The numbers at the top of the
graph are the upper limits of the experimental errors

for the negative ions.

we can also calculate a contribution to the ef-
fective mass of a sphere oscillating at frequen-
cy w from viscous flow in the normal fluid.™
Adding together the contributions from the nor-
mal and superfluid components, we obtain the

expression

M*=M +3px37R*(1+ 3(p 0/pR)] (T<T,) (8)

with

6 E[Zn/wpn]‘“.

Here 7 is the normal fluid viscosity, and 0 is
the penetration depth.
In this temperature region we cannot analyze
the motion of the ions in terms of Eq. (1), but
must consider the viscous drag of the normal
fluid on the ions. The equation for the drift

velocity is*

M*(dv/dt)+ 6mmR(1+R/5)v=e8&. (9)

Solving for the real part of the microwave mo-

bility we obtain

u(0)

ww(0)M*

m @) =GR /5)

ol

e(1+R/d)

]zi_l. (10)
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The relationship between the effective mass,
M*, and the experimental quantity, m*, plot-
ted in Fig. 2 is
1/2
_1]

wo € [ (0)
wp(0) |1 (@)
e 2 R (M*)Z 1/2

_[<wu(0)> o‘*(ua"/'é)] ;
Expression (7), [1] with R evaluated from (6)
and [2] with a constant R=5.8 A, is shown by
the solid lines in Fig. 2 in the temperature
region below 1.4°K. The calculated value of
(11) with M* given by (8) is also shown for the
same radii by the solid lines in the tempera-
ture region above 1.9°K. The calculated val-
ue of m* differs from M* by less than 20%
for these radii.

In the intermediate temperature range we
cannot calculate the contribution of the normal
component to the effective mass, because the
quasiparticle mean free path is comparable
with or greater than R.

Several other experimental observations
can be explained in terms of the picture of the
positive ion discussed above: (1) The measured
binding energy of the positive carrier to vor-
tex rings* has been interpreted!® as showing
R=6.44+0.10 f\, in reasonable agreement with
both the low-temperature value predicted by
(6), R=6.7TA, and the “best-fit” value, R=5.8
A. (2) The positive-ion mobility in He II near
T, is observed!® to deviate from the simple
ed/T temperature dependence seen at lower
temperature. The temperature range in ques-
tion is just that in which viscous hydrodynam-
ics can be applied in the normal fluid. We show
in Fig. 3 the mobility calculated by applying
Stokes’s law

1(0)=e /[6mMR(T)],

in this temperature range.’ R has been cal-
culated from (6). (3) The observed mobility!®

in the Hel region can also be accounted for by
Eqgs. (6) and (12). We show in Fig. 3 experimen-
tal and calculated mobilities along the vapor
pressure curve, In this temperature range the
variation of P,, (and consequently R) with T

is significant. (4) The observed scattering cross
section for the positive carrier on He® impur-
ities!? is also in good agreement with this pic-
ture. The cross sections for phonons and ro-
tons!? are larger, and presumably include con-
tributions from the electrostrictive region around

(11)

(12)
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FIG. 3. Positive-ion mobility in liquid helium as a
function of the temperature above 1.8°K at the vapor
pressure. The curve marked kinetic theory is propor-
tional to ¢~/ T. The radius for the Stokes’s law curve
was calculated,.as explained in the text, with no param-

~ eters adjusted.

the solid core.?®

The model which we favor for the negative
carrier (the bubble model) predicts radii esti-
mated differently by different authors. The
one experimental value in the literature’® is
14.5+0.4 A. If our value of the effective mass
is fitted to (8) (without a solid core contribution)
the indicated value of R is 1344,
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It is demonstrated that the third-order term in the density expansion of quantum-me-
chanical transport coefficients diverges. This implies a nonanalytic density dependence
for quantum gases which is in addition to the familiar nonanalytic behavior associated
with quantum degeneracy. This divergence for quantum systems is completely analo-
gous to that which was recently discovered for classical systems.

Recently, it has been independently demon-
strated by several authors!~® that the coefficients
of the third- and higher-order terms in the for-
mal density expansion of transport coefficients
diverge —for classical gases. This density-
divergence situation had been previously noted
for the Markoffian limit of the master equation.®
The tentative conclusion that has been drawn
from this unexpected development is that classi-
cal transport coefficients are not analytic func-
tions of the density. This conclusion is not
unanimous, however, and there is some ques-
tion” about the term which is shown to be diver-
gent in Ref. 5. As of now, the analyticity of
the density dependence of classical transport
coefficients remains the subject of consider-
able investigation, conjecture, and dispute.

The purpose of the present note is to point
out that the third-order term in the density ex-
pansion of quantum-mechanical transport co-
efficients also diverges. This would imply a
nonanalytic density dependence of quantum gas-
es which is in addition to the familiar nonana-
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lytic behavior associated with quantum degen-
eracy. Our method is to determine the asymp-
totic time dependence of a leading term in the
binary-collision expansion® (f-matrix expansion)
of the third-order density coefficient. This
calculation is brought into analogy with the clas-
sical case by expressing the position between
particles as expectation values of Heisenberg
position operators in momentum representation.
The third term in the formal density expan-
sion of quantum transport coefficients can be
given in terms of the expectation value of the
four-particle collision operator B,(t),®

fa

ik R 38,(t) e—zk- R

= fdﬁlzdﬁlsdﬁ“e
where B,(#) is defined in Ref. 8, R; denotes the
position of particle 2,

- - =

4
ﬁ,—ﬁ., k-R= 2, Eﬁ,
i=1 ¢t !
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