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MODES OF SOUND PROPAGATION IN DILUTE SOLUTIONS OF He' IN LIQUID He4 g
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The attenuation of sound in a dilute solution
of He in He~ has recently been measured.
At temperatures above 0.3 K, the form of the
attenuation is very similar to that of pure He,
except that the phonon relaxation time is changed
by the presence of the He'. At temperatures
below 0.3'K the phonon contribution to the at-
tenuation (which varies as T') becomes negli-
gible, but an added peak is observed in the at-
tenuation. This peak is apparently due to the
absorption of the sound by He . It is the pur-
pose of this Letter to investigate the modes
of sound propagation in dilute solutions of He3

in He at such low temperatures that the pres-
ence of phonons may be neglected.

The propagation of sound will be studied by
using the kinetic equation method. ' The tem-
perature is assumed to be so low that the on-
ly excitations present are the He quasiparti-
cles which form a degenerate Fermi liquid.

The excitation energies e(p) are assumed
to have the form

q(p) = eo(p) + ~+p' v
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where p is the He' momentum relative to the
medium at rest. The first term ep(p) is the
binding energy of the Hes in He, which is, of
course, dependent upon the density of fluid p.
The second term is the kinetic energy, where
m* is the effective mass. The third term gives
the energy shift required by Galilean invariance
when the fluid is moving with velocity vs. The
last term is due to the interactions between
He atoms: I'p and I', are the parameters de-
fined by Landau, 6n the change in the distri-
bution function from equilibrium, eF the Fer-
mi energy, and N, the equilibrium density of
He' atoms. If the local density of He' is giv-
en by N(r, t) =N, + 5N(r, t), then the last term
in (1) can be written as

where J = Jpndpp is the total excitation momen-
tum. The distribution function n(p, r, t) is found

by solving the linearized Boltzmann equation
of Khalatnikov and Abrikosov, ~ where e is giv-
en by (1). Let 5p = p —pp, where pp is the equi-
librium density. Then, if it is assumed that
6p, vs, and 5n vary, like the sound wave, as
exp[i(q r ut)], -one may find 5n as a function
of p and vs. Two additional equations are then
required to find these quantities. One is the
equation of continuity of mass:

Bp/Bt+V. [pv +J]=O.
s

This has the same form as for phonons in He4.
The other equation which is necessary may be
derived in a manner analogous to the deriva-
tion for phonons in He by de Boer.' The lin-
earized equation is given by
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where ps = p-N0ni0* is the superfluid density;
m, ~ =m*/(I + ,'F,); s = u&/-qvF where vF is the
Fermi velocity; s =(co/vF)(1 NomO*/p)"-;
and cp is the velocity of sound in He4, cp' = BPp/
~p) also
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In the derivation of (5) the equation of continu-
ity of number of He' quasiparticles was used
in order to relate J to bN. When (5) is insert-
ed into the expression for 5N derived from the
Boltzman equation, the following compatibil-

where I'p is the partial pressure of the He,
and Be/BN is found by using expression (2) in
Eq. (1). Equations (3) and (4) may also be solved
by using the assumption that 5p, vs, 5N, and
J vary as exp[i(q r-vt)]. The result is
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ity equation is derived:

1 ia-r +v ) 1-i&u7 +z 1+3F p (1+~E ) v s -s

c'=c,'[I+(N,m, */p, )(A+A +AA )], (8)
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For this solution s'=80, and, therefore, the
expansion for large $ and m($) was valid; an
error of about 2% is made by dropping terms

(9)

where 7. is the Hes relaxation time. The func-
tion so($)' is given by

so(]) =-ln -l.]+I
2 ~-1

Equation (6) is a transcendental equation whose
solutions for complex s give the velocity and

a,ttenuation of sound. %hen the Hes-He inter-
action vanishes, the term in Nomo*/po drops
out and the result is identical with that of Ref. 4

for pure He'.
Equation (6) is generally very difficult to solve.

However, for
~ $ ~ »1, it is possible to expand

w($) in a power series a,s in Ref. 4, and then
Eq. (6) becomes a quadratic equation in s'.
One solution of this equation gives the follow-
ing results for the sound velocity c and the at-
tenuation n.'

of order 1/s' with respect to 1. In (8) and (9)
only terms linear in the concentration have been
retained.

The velocity of sound for this mode is very
close to that in pure He, so that this must be
the mode observed by Abraham et al.~ To the
order of approximation used, the velocity is
independent of temperature, in agreement with
their observation of a velocity change of less
than 1 % as ~r varied from «1 to -10. The
attenuation is given by a relaxation-type for-
mula, , in agreement with the experimental re-
sults, as discussed in Ref. 1. The value of
o./a at peak attenuation is independent of fre-
quency. The calculated value of (o/v) e~ from
(9) is =0.37(1+A)(1+A') &&10 ~ cm ' sec, where-
as the experimental results for frequencies
20, 60, and 100 MHz are 0.65, 0.70, and 0.64
&10 ' cm ' sec, respectively. If the average
of these values is compared with the theoret-
ical values, and I", is neglected in A, one ob-
tains A =A' =0.34.

The second solution of the quadratic equation
gives Res'= 3. Therefore, for this solution
the expansion of w($) for large 1$ I is not val-
id unless w7. «1. For this case the second so-
lution is

Cf2=v 2
—,'(1+ ,'E )(1+E )- 0 ——,'(1+E )(1+A)(1+A')+

0 p
' 0
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If the He'-He4 interaction vanishes, then the terms in Nom*/po do not appear, and the results (10)
and (ll) become identical with the results for the hydrodynamic mode of pure He~. The condition
for the existence of a He -like zero-sound mode may be investigated by examining (6) for O'K (&uv = ~)
as done by Landau for pure He . The necessary condition for a zero-sound mode to exist is that

Since the third term is negative, the He'-He interaction makes the condition upon Io and E, even

more stringent to fulfill than in the pure He case. If this mode exists, it is easy to show that the
attenuation will vary as 1/v, and at O'K, c = vF(1+2 exp[-2(1+1/A) j).
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We conclude with a physical description of
the modes of oscillation. If the velocity of sound
(8) is inserted in (5), we find that Cps/p~ = (I
+A) '(5N/N, ). Thus the relative bunching of
the He' is of the same order of magnitude as
the relative density changes in the He: The
superfluid and the normal fluid respond in rough-
ly the same way to the sound. On the other hand,
if the velocity of the He -like modes is insert-
ed into (5), s' may be dropped in comparison
with s, and we find that Gps/ps = -(I + A')(N0m 0*/
pz)(5N/N0). That is, the relative density chang-
es in the superfluid are quite negligible in com-
parison with the He3 bunching. This is reason-
able, for we would expect that the He -like modes
would be propagated mainly by density chang-
es in the He' and not by the superfluid. How-
ever, because of the much larger density of
He', the absolute value of the density change
Cps is the same order of magnitude as ma*5M
= 6p„,' the normal density change. Actually,
the He3-like modes are rather similar to sec-
ond sound in pure He . This is because the
density changes in the normal fluid are of the
same order of magnitude, and of opposite phase
to the density changes in the superfluid: 6p
+ 6p+ = -A'5p+.
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Phonon frequency shifts due to the change
of temperature have already been measured
for several materials, in particular for lead. '
These shifts reflect the deviation of the crys-
tal potential from that assumed in the harmon-
ic approximation. This deviation can also be
explored by a.rtificially changing the relative
positions of the atoms in the crystals by appli-
cation of external forces.

We have measured by the method of neutron
spectrometry the frequency shifts of six select-
ed phonons in lead due to the application of a
hydrostatic pressure of 3000 atm. The measure-
ments were done on a conventional triple-axis
spectrometer in a constant-Q mode of opera-
tion. ' The scattering chamber for 3000 atm
and for a sample of 30 mm diameter and 65
mm length is described in detail elsewhere. 3

The positions of the six selected phonons are
shown in Fig. 1 as circles in the dispersion
curves of lead' for the directions [&00] and

[& p &]. Figure 2 shows the results of a typical
shift measurement. Because of the low phonon

energy, the phonon peak is superimposed on
a fa,lling ba,ckground due mainly to ela, stic scat-
tering in the sample and in the wall of the pres-
sure chamber. For the evaluation of the shift
the center of a peak was defined by the inter-
section of two straight lines fitted to the flanks
of the peak. The assumption was made that
the shape of the phonon peak is not altered by
the pressure. This assumption is not contra-
dicted by any of our measurements. The influ-
ence of a falling background on the shift is elim-
inated by this evaluation method as long a,s the
background is approximately linear.
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