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only electric quadrupole hyperfine splitting
due to the short spin-lattice relaxation time
of the Yb'+ ion. ' This simplifies the interpre-
tation of the spectrum observed for the 76.5-
keV state (T», =1.9 nsec) of Yb"' shown in
Fig. 2(b). An oxide target and absorber were
employed. A 1:1 signal-to-noise ratio was ob-
tained in the counting window, with a total count-
ing rate of 600 counts/sec. The partially re-
solved spectrum is interpreted as the super-
position of seven Lorentzian line shapes, the
depths and positions of which are related so
that only three parameters are necessary to
specify the theoretical spectral shape. From
this spectrum and from a spectrum taken us-
ing an oxide ta.rget and metallic absorber (me-
tallic Yb exhibits no hyperfine splitting), a
preliminary estimate of the electric quadru-
pole splitting has been obtained. We have com-
pared this hyperfine splitting with one we have
obtained for Yb' 0 using a monochromatic source
(Tm'7o in metallic thulium) and an oxide absorb-
er isotopically enriched in Yb" . Since both
cases involve 2+-0+ transitions in the same
compound of the same element, the ratio of
hyperfine splittings in the two cases gives the
ratio of the quadrupole moments: Q'~4/Q~70= 1.1
+ 0.05.

Further work on other members of the fami-

lies of the above isotopes should provide one
of the first direct observations of the system-
atic variation of the electric quadrupole mo-
ment and the magnetic dipole moment in a se-
ries of stable isotopes of the same element.
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The purpose of this Letter is to calculate the
effect of the binding on the distribution in an-
gle of the particles which have suffered single
or multiple scattering with the lattice atoms,
and to suggest experiments to observe the pre-
dicted dependence. Heretofore in all theoreti-
cal descriptions the effect of the binding of the
atom has been ignored on the basis that the
energy of the charged particle is much larger
than the lattice energy and, consequently, all
that is needed is the free two-particle differ-
ential scattering cross section. ' It will be shown
that because the interaction potential is long
range, the effect of the binding remains impor-
tant in crystals even at large energies. We
shall show that there exists a maximum in the

single-scattering differential cross section
at an angle determined by the ratio of the ef-
fective screening length of the interaction to
the particle wavelength, providing thereby a
new possibility for the unambiguous determi-
nation of the screening length. With regard to
multiple scattering, we shall show that the an-
gular spread never reduces to the well-known
formulas of Williams, ' and that for sufficient-
ly thin crystals, the departure from the results
for amorphous films is marked. For charged
particles at high energy the free electrons con-
tribute greatly to the total differential scatter-
ing cross section; however, for large Z it is
well known that the angular spread comes most-
ly from t,he nuclear collisions. Consequently,
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tering will be primarily multiple. The aver-
age number of particles which will suffer a
single deviation through an angle between 8
and 6+d8 is given by

P(8)d0 =Ntdv) (5)

Of course, the validity of the multiple-scatter-
ing calculation hinges on t being several mean
free paths. In fact, the threshold thickness
t, can be written for small A'(x') as

t =-i ln(A'(x')),

where t is the thickness of a film containing
N atoms/cc. We now calculate using Eq. (S)
an angle 6l„which is defined such that the aver-
age number of deviations per particle through
angle ~6ly is unity. Thus

P 0 d0=1.

i.f being the mean free path. For reasonable
values of the mean-square displacement and
the screening length, one finds that t, is two
or three mean free paths. Therefore, the asymp-
totic form (10) will not be attained in practice
unless A is very small. For a pure Coulomb
interaction, one obtains

The quantity 8, will be directly related to the
mean-square angular spread of the multiply
scattered beam, which is the ultimate object
of our calculation. One finds, using the static
approximation' in Eq. (2) (E»A&a),

(6)

t =i ln[k '(x')(M/2m)'], (12)

and the ln term clearly grows without bound
with increasing 00.

Returning now to the calculation of the mean-
square angular spread of the emerging beam,
one has

where

-y/2a'
F(y) =+ 1

y+A y+A

]. A2/2a2 1,e Ei —~,(y +ii'});

where p, =cos6jy and

-Ei(-x) = f„e dt/t.

From Eq. (6) it follows that as t- ~, 0, —7}.
We will consider films of thickness t such that
cos8, = 1—8,'/2. Under this condition the up-
per-limit contribution can be neglected in solv-
ing for 8,. The form of the solution of Eq. (6)
for Oy depends critically on the ratio of the
film thickness to a threshold thickness t, de-
fined as

(0 ) = f 0'P(0)d8

which. reduces for the differential cross sec-
tion of Eq. (2) to the form

(0') =0 '[G(k '0 ')-G(o)]

where

A' -y/2a'
G(y) =ln(y+A')+, (1—e y

)
y +A'

A/2a . f y+A—1+,le Eil-
2a }, 2a'

In the limit of large thickness (k, '0, '» 2a')
this gives

(82) =0 ' ln(k '8 '/2a')

—0 2 ln(k 20 2/A2) y0 2ln(A2/2a2)
w 0 w

(14)

However, when t becomes comparable with t,
the result departs markedly from the classi-
cal formula, tending asymptotically to the form

8 —0 (t0/t)e
2 2 to/t-

(10)

4k, a' E/m c'
KT}N 2nZ (e /hc) (x )N

For t large compared to t, one obtains Williams's
nonrelativistic result (assuming A'/ko' is small):

0 2=~NtZ/2k '-=0
1 0 w'

a result which contains the effect of binding
through the mean-square displacement of the
atom, in contrast to the result of Williams
'which is given by the first term on the right-
hand side of Eq. (15). The presence of the bind-
ing term of course is due to the long range
chosen for the interaction. Notice that (0') is
independent of the screening length for thick
films. If the screening length is taken short
compared to the atomic mean-square displace-
ment, one recovers Williams's expression.

When the film thickness becomes less than
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the threshold thickness t„one obtains for the
pure Coulomb interaction the expression

2 -t, /t8. =8 e

When there is some screening of the interac-
tion, the more exact expressions must be used
to determine (82) for t= to.

These considerations indicate that there will
be interesting and noticeable deviations in the
angular spread from the classical predictions
as a function of thickness, energy, and temper-

ature (through the mean-square atomic displace-
ment).
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The purpose of this Letter is to give an ar-
gument which casts some doubt upon the con-
clusion of Cohen and Abrahams' that quasipar-
ticle lifetimes are sufficiently short to reverse
the prediction'& that liquid He' would- undergo
a fermion superfluid phase transition as a re-
sult of scattering in relative D states.

The BCS method' may be rearranged' to give
an equation for a reaction matrix which plays
the role of an effective interaction and has to
be attractive to produce a phase transition.
If a quasiparticle of momentum p has a com-
plex energy op+ iI'p relative to the Fermi en-
ergy, then the imaginary part I'p produces a
cutoff' in those intermediate states for which
I p

& Ep Cohen and Abrahams' used the form

I' =e '/A
p p

(where A =0.6EF, with EF the Fermi energy),
which cuts off intermediate states with &p& A,
and so found that, for relative D states, the
effective interaction was repulsive in liquid
He' and would not lead to a transition.

Equation (1) is not expected to be a good ap-
proximation for calculating the cutoff since its
derivation' assumes that kT «e- «EF (wherep
k is Boltzmann's constant and T is the absolute
temperature). The conclusion of Cohen and
Abrahams' would still follow if Eq. (1) under-
estimated I'p for large P, but there is an ar-
gument which suggests that this is not so.

For the moment, it will be assumed that two-
body collisions are dominant. This is in the
spirit of the earlier work although it will be

seen that it is not likely to be a good approxi-
mation.

As a particle of momentum p moves through
the medium, it has a mean free path Xp given
by (no'p) ', where n is the number density and
0 is the mean cross section for scattering offp
another particle in the medium. If the mass
is m, the mean free time 7'p is given by mXp/P,
and then I'p which is h/vp becomes

I' =(Sn/m)pc% . (
p p

When P is near to the Fermi momentum P F,
m should be the effective mass at the Fermi
surface and the most significant variation of
rp with respect to P comes from o'p, which
is small because scattering is limited by the
exclusion principle. In this limit Eq. (2) re
duces to Eq. (1). On the other hand, for very
large P, the exclusion principle is unimportant
and the scattering is determined mainly by
the short-range repulsive region of radius x,
in the van der Waals potential so that gp is
slowly varying and I'p is proportional to P.
Equations (1) and (2) may also be obtained by
solving a Boltzmann equation in the appropri-
ate limits. '

The argument which led to Eq. (2) has also
been used in discussions of the nuclear optical
model and seems to be in general accord with
exper iment. '

Since small momentum transfers have a low
weight and since, for large P, EF may be ne-
glected compared to the kinetic energy, a rough
estimate of the right-hand side of Eq. (2) may
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