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an ion rate-limiting current. Hence a direct
experimental measurement of the built-in po-
tential together with its dependence on temper-
ature and film thickness would be of the great-
est value in establishing the domain of valid-
ity of the present model for any given system.
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We report a simplification of the Landau theory, permitting more direct prediction of
compatible space groups in second-order phase transitions. The theory is applied to
the VSSi transition, to predict that the lower symmetry space group is either C4& -P4mc
or D~ -P4m2. The former possibility admits a polar axis.

In this Letter we report on a simplification
of the thermodynamic (Landau) theory of sec-
ond-order phase transitions' which permits
the analysis to be carried out in a far more
straightforward fashion than heretofore possi-
ble. The analysis will be applied to a case of

a second-order phase transition in which there
is much current interest: V3Si; and some con-
crete predictions regarding the lower symme-
try space group will be made, apparently for
the first time.

Landau's theory has been presented in many
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places, so we only need to give a sufficient-
ly complete description of it to make our sim-
plification clear. The problem to be analyzed
is the following: Given a crystal with space-
group symmetry So in the higher-symmetry
phase, find all compatible space groups S„
S,', S,", ~ ~ ~, in the sense that the latter can
be achieved by second-order phase transition
from the former. A necessary condition for
compatibility is

S, is a subgroup of So. (A)

(1) (k )(m) (k )(m)

O, m
(2)

In (2) p~) is a linear functional of the basis vec-
(ko)(m)tors p

o of a single s ace-group irreduc-
ibie representation D( @(~(oi t)t, . These bs-
sis vectors ma. y alternatively be defined as

the c~ ~, which depend upon T and P. The
k )m)

Gibbs function of the crystal, C', is taken as

a functional of the set (c~ c j and expand-(k,)(m)

ed as

((
(k o) (m)

j)
(0) (1) (s)

)
Q

where 4(s) is a scalar homogeneous symmet-

ric polynomial of sth degree in the 1cz k,) m)

At any (T, P) the nonvanishing (cz + j are(k,)(m)

found by minimizing 4; an evident physical
constraint is that 4 min for (T, P) &(T Pc) should

correspond to all cz ~ =0 so that above
(k )(m)

the transition p = p' ', and the symmetry group
of the crystal is Np. But this constraint requires
that for (T, P) & (TcPc), 4 ')' = 4 's' = 0. Since
4"' vanishes in any event, an essential condi-
tion is 4'3'= 0 by symmetry, or, in terms of
space-group reduction coefficients, '

To find sufficient conditions, an indirect approach
is needed. Consider the atomic probability dis-
tribution, or density function, p(r). The crys-
tal symmetry group S is the set of space-group
operators ly It j which leave p(r) invariant. For
p(r) we write

p(r) p (0)(r) y p (1)(r)

where p(0)(r) is invariant under all operations
in So, and

i.e., the symmetrized cube of D' k)(m) shall
not contain the identity representation D(r)(1+)
of Ip. Spatial homogeneity imposes the re uire-
ment that the antisymmetrized square of D* )(m)
shall not contain the representation of a polar
vector D( )( ), or

([+km]„Ir v) =0. (c)

An acceptable irreducible representation of
So satisfies (B) and (C) and may be used in the
construction of 4, its minimization, and the
subsequent determination of possible sets

(k,)(m)
fc~ ~ j and then the corresponding p"'(r)
and S,. gs previously formulated, and applied,
each D(* )(m) of So must be separately tested
for acceptibility and then used to find 8,; this
is a lengthy3 and, as shown below, an unneces-
sary process.

Our simplification is based upon an observa-
tion, working in the inverse order. If S, is
a group compatible with SD then p"'(r) is an
invariant space for all 1y, I t,j in S,. But by
construction, p (('r)) is a space built from a com-*piete set of basis vectors which produce D(
of Sp. But this set can produce an invariant
space under S, if and only if

D
(*k)(m)

of So subduces D of S,.(r)(1+)
(D)

That criterion (D) gives all possible acceptable
(+kh(~D( k)(m) of S is seen from the converse ar-0 * jgument. An acceptable D( )(m) of So can al-

so be considered as induced from D( )( +) of
S~. By the Frobenius reciprocity theorem,
there will appear in the induced representation
only those D( k)(m) of So which already satis-*
fy (D). Of course, D( k)(m) of So may suMuce
other representations in S, in addition to D( )( +).
Finally, if an acceptable D( k)(m) of So is one-*

(*kh(~dimensional, or if an acceptable D( i(m) of

So subduees only a, multiple of D(r)( +) of S,
and no other representation, then S, is a, nor-
mal subgroup of $0. These simplifications per-
mit one to work directly with the groups So
and I, and avoid the minimization of 4 required
in the usual analysis. 3 Condition (D) is rigor-
ously contained in the Landau theory, although
stated explicitly here for the first time, we
believe.

To conditions (A)-(D) it is plausible to add
the rule

(+k)(m)
D of Sp corresponds

([ km j(()) I I 1+) = Os (B) to a physical tensor field. (E)
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Clearly (E) is not in the Landau theory but is
implicitly used in most physical arguments.
The field may be the normal coordinates Q( ),
macroscopic strain tensor [c], etc.

These considerations may now be applied to
predict the space-group symmetry of the phase
of V~Si below the transition point' T~ = 20.5'K.
This space group is presently not known. For
T & Tm, V~Si has symmetry I0 = Ops(Pm3n);
at T= T~ a second-order phase change occurs
to a tetragonal structure, with the same unit
cell, and with c/a =1.0022.

From (A), the only possible tetragonal space
groups are

D (P4/mme), D4 (P422), D2 '(P42c),

C (P4mc), and D (P4m 2) .
4v

(4)

A1, E, E2g g g
(5)

not acceptable. Criterion (C) gives nothing be-
yond (5). {Parenthetically we observe that the
representations (5) are those by which the strain
tensor [v] transforms, so [v] is not an accept-
able physical tensor field. '0] Application of (5)

Since the unit cell is unchanged, an acceptable
D(*)( ) of O)0. must have *k= I', to be used
in pu'(r). Thus we need only concern ourselves
with the ten irreducible representations of Og~/X,
i.e., of Oh. Similarly the irreducible represen-
tation D(~)(1+) of I, only requires considera-
tion of the point groups isomorphic to I),/Z.
Using the subduction criterion (D) we obtain
Table I which gives possible acceptable irre-
ducible representations' of $0 for each OI, . Us-
ing criteria (B) we find

Table I. Possible acceptable representations.

1' of 0 =I) /X r( ).fe/X1

A1g', Eg
A1g', Eg,'

g'
A1g', Eg,
A1g, Eg,'

A1u& Eu
~1u
A2u'. Eu
~2u

Alg of D4h'
A1 of Dh'

A1 of C4v
A1 of D2d
A1 of D2d

eliminates D4I, . This follows directly from
the conditions (A)-(D) only.

Now we use (E) and take the physical field
to be the optic-mode normal coordinates in

V~Si at*k=I", which are

optic modes:

A 0+E 0+ F $2E SE $2E
2g g 1g 1u 2g 2u

(6)

From (5) and (6) and the left-hand side of Ta-
ble I we see that only modes E1u and E2u are
acceptable. As there are no modes in (6) of
symmetry A1u or E„, space group D4' is elim-
inated.

Each of the three remaining possible groups
has at least one "free" internal structure pa-
rameter to be specified in addition to c/a. We
take each such parameter to represent a Car-
tesian component of an atom displacement from
its corresponding position in 6)0 (in which the
parameter vanishes and c/a = 1). The result-
ing pattern of displacements in each case is
then analyzed into normal modes of OIO. %e

aE. B. Wilson, J. C. Decius, and P. C. Cross, Mo-
lecular Vibrations (McGraw-Hill Book Company, Inc. ,

New York, 1955).

Table II. Predicted lower symmetry space groups.

Site Symmetry Coordinates Atom

(c)
(a)
(e)

(g)
(a)
(d)
(u)

C2v
C2v
Cs

C2v

Cs

6)1. C4„(P4mc)
(0, 1/2, 1/2+u), (1/2, 0, u)
(0, 0, 1/4+v), (0, 0, 3/4+v)
(1/4, 1/2, w), (1/2, 1/4, 1/2+w)
(3/4, 1/2, w), (1/2, 3/4, 1/2+w)

@1' D2d ( 4~2)
(0, 1/2, 1/4+p), (1/2, 0, 3/4-p)
(o o o)
(0, 0, 1/2)
(1/4, 1/2, 3/4+ q), (1/2, 1/4, 1/4 —q)
(3/4, 1/2, 3/4+ q), (1/2, 3/4, 1/4 —q)

Si
V
V

Si
V
V
V

"Symmetry Groups, " in International Tables for X-Rap Crpstallo~aphp, edited by N. F. M. Henry and K. Lons-
dale (Kynoch Press, Burmingham, England, 1952), Vol. l.
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find that for the transition O~'-D2d', modes
of symmetry Eg are required. This violates
(5) and eliminates D2d'. To go from O~ -C4„'
requires modes of symmetry E1uEg. To go
from Oh -D2d' requ'r s E2uEg. But by as-
sumption, only one acceptable irreducible rep-
resentation may occur in (2). This obliges us
to take certain parameters as zero in C4~ and

D2d, so that Eg does not occur in the displace-
ment pattern. The result of this analysis and
hence the predicted compatible subgroups C4~'
and D2d' are given in Table II. The atom po-
sitions and site symmetry is given with the min-
imum number of free parameters in each ease.
Observe that one possibility, C4~', possesses
a pola, r axis, which would permit ferroeleetric-
ity, as recently speculated. The different
site symmetry of certain V atoms in the two
cases may permit an indirect structure deter-
mination, although recent work could not re-
solve such possibilities. "

Recently" another mechanism for the tran-
sitions has been proposed, based on an electron-
lattice interaction, in which the V atom distor-
tions (along the chain) had symmetry E . In
that work, it was necessary to identify the tran-
sition as first order, in contradiction to other
workers, and to the analysis presented here,
since Eg is not acceptable. Determination of
the lower symmetry structure should resolve
this conflict.

The writer believes that the simplification
presented here will enable much more use to
be made of the Landau theory so that the "di-
chotomous"3 symmetry predictions of the the-
ory can be examined apart from the theory's
analytical predictions. The latter a.re known
to be inapplicable in cases where the symme-
try argument apparently holds.

Note added in proof. —After this Letter was
submitted, the writer learned of some indepen-
dent work by Professor R. Loudon (private com-

munication) on the same subject. Loudon's
analysis was based on point-group considera-
tions; his conclusions regarding point-group
symmetry of the low-temperature phase agree
with those presented here. He did not, however,
predict possible full space-group symmetry
of the low-temperature phase.
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