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of the asymptotic renormalized propagator,
'(k) -Zk, k —~. An equivalent state-

ment is obtained from the vacuum expectation
value of the equal-time commutation relation,

([p(x,x,), s,p(y, x, )]) =i6(x—y)Z (2)

and the substitution of (1) into (2), with the use
of the equal-time commutation relation appro-
priate to the elementary p, yields

only for p.o =0 is this argument invalid.
Generalizations of these remarks to the case

of a boson field composed of elementary fer-
mion fields are fairly straightforward, although
the specific form of the results will depend
upon the interactions adopted for the fundamen-
tal fermion fields.

It is a pleasure to thank Dr. K. Kang for help-
ful and informative discussions.

(3)

For any interaction of the p field, the ratio
on the right-hand side of (3) may be expected
to diverge, providing the desired result, 2 =0.
Essentially just this divergent ratio was used
by Nishijima to demonstrate the validity of
(1) in a particular modeL Quite generally, (p')
may be written as p,,'N', where p., denotes the
bare mass of the y field, and N is a (linearly)
divergent number increasing faster than any
(typically, logarithmic) divergence of (y'Ip);
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The general methods of application of renor-
malization theory and the degree of accuracy
obtained in explicit calculations in the field
of quantum electrodynamics have been in a
state of continual refinement. This has been
especially true for the theoretical calculation
of the radiative corrections to the bound-state
energy levels of light nuclei. The object of
a large part of this effort has been to deter-
mine as accurate a comparison as possible
of the experimental and theoretical values of
the Lamb shift. '

This paper is concerned with the exact eval-
uation of the fourth-order radiative corrections
to the energy levels of hydrogenic atoms. More
precisely, the object here is to compute exact-
ly those parts of the calculation that were pre-
viously estimated and to recalculate and pro-
vide checks by various methods on all parts
of the calculation. In terms of numbers the
most recent experimental value of the Lamb
shift~ is 1058.05+0.10 Mc/sec and the most
recent theoretical value is 1057.64+0.21 Mc/
sec. Of the total theoretical uncertainty, +0.10

Mc/sec is due to the estimated fourth-order
radiative corrections. An exact calculation
of these effects, therefore, would make possi-
ble a closer comparison of the experimental
and theoretical values of the Lamb shift.

It has been rigorously shown' that the cor-
rect answer to this bound-state problem to
order o.'(Za)' can be obtained by first calcu-
lating the fourth-order radiative corrections
to the elastic scattering of an electron in a
fixed pointlike Coulomb potential in first Born
approximation. The Feynman diagrams of in-
terest here are shown in Fig. 1. I et M~ de-
note the matrix elements of the corresponding
diagrams where it is understood that

M' =M' +M' = 2M' &' =M' + M' = ~'
Let mz be that part of M+ which is dimension-
less and is defined by the relation

M =-8m en fd P d P g(P )
2 2 4 4
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FIG. 1. Feynman diagrams that were calculated for
the fourth-order radiative corrections to the scatter-
ing of an electron in a Coulomb field.

where P, and P, are the initial and final elec-
tron four-momenta, ~ is the electron mass,
g(P, ) and g(P, ) are the free particle-electron
wave functions, and A& (I'i-P2) is the exter-
nal four-component field potential. The value
of e is taken as positive in rationalized Gauss-
ian units and l and c are set equal to unity.
Then from the scattering calculation one can
infer a modified potential from which one can
compute the following energy-level displace-
ment formula. '.

(zn)' 4

where nz is the sum of the previously defined

m~ over all the diagrams.
One can write down the matrix elements for

the scattering diagrams using the Feynman
rules. The four reducible diagrams can be
simplified by insertion of the renormalized
second-order functions. The effect of this re-
placement is to leave only one integral over
the photon momentum variable and either one
or two integrals, depending on which function
is involved, over the auxiliary variables that
were introduced in the renormalization process
of the second-order functions. In diagrams
3-5, no less than the following two methods were
used to do the integrals over the photon momen-
tum and auxiliary variables. The first way
immediately combined all denominators and

therefore introduced integrals over two or three
additional auxiliary variables. The integral
over the photon-momentum variable was done

first, together with any further renormaliza-
tion that had to be done in the fourth-order
matrix element, and then the remaining inte-
grals over the auxiliary variables were per-
formed. The second way immediately integrat-
ed either one or two of the auxiliary variables
that were contained in the renormalized sec-

ond-order functions, thereby reducing the num-
ber of integrations to be performed at the out-
set. Additional auxiliary variables were intro-
duced in order to combine the remaining de-
nominator s, and then the integr ation over the
photon-momentum variable was performed.
The integration over the remaining auxiliary
variables completed the process. Additional
methods consisted of different ways in which
integrals could be separated or combined or
proved equal by considerations of symmetry.

In each method of integration described in
the previous paragraph there were two ways
employed to perform the Dirac algebra required
to extract the Lamb-shift terms. The integra-
tion over the photon-momentum variable in-
volves at one point a linear transformation
from the old to the new variable correspond-
ing to a shift of the origin in momentum space.
The first method expresses the shift in terms
of q and s defined by

q =P,-P2, s =P)+P2.

This transformation is then substituted into
the numerator, the gamma sums completed,
and the Lamb-shift terms calculated. The sec-
ond method immediately completes all the gam-
ma sums and expresses the shift in terms of
P, and P,. This transformation is substituted
into the numerator, and then the Lamb-shift
terms are extracted. Diagram 1 is irreduci-
ble and, therefore, integr ations over two pho-
ton-momentum variables must be done. The
denominators are combined and integrations
over five auxiliary variables are introduced.
A shift in each momentum variable is neces-
sary to diagonalize the denominator, and the
Dirac algebra of the numerator is calculated
in the two ways described above. Eventually
a large set of four-dimensional integrals over
the auxiliary variables is obtained which are
classified according to a system which makes
the calculation and checking of their values a
very organized and automatic task. Diagram
2, although reducible, can be handled in a way
such that the final integrals over the auxilia-
ry variables fit exactly into the classification
scheme of those of diagram 1. Again the Dirac
algebra is evaluated in the same way as pre-
viously discussed for diagram 1.

If A. is the photon mass then the final numer-
ical values are

13 X ~' 7 7 1613
m, = ——in——— I. $(3)+—— —

9 v 16 3 6 864 '
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Table I. Theoretical and experimental values of the Lamb shift in Mc/sec for H, D, and He+.

D He

Theoretical
Experimental
Experimental

1057.499 + 0.11
1057.77 ~0.10a
1O58.O5 + O. 1Oc

1058.763+ 0.17
1059.00 + 0.10
1059.34 + 0 10

14038.17+ 4.4
14040.2 +4.5b

aSol Triebwasser, Edward S. Dayhoff, and Willis E. Lamb, Jr. , Phys. Rev. 89, 98 (1953).
Edgar Lipworth and Robert Novick, Phys. Rev. 108, 1434 (1957).cR. T. Robiscoe and B. L. Cosens, Phys. Rev. Letters 17, 69 (1966).
R. T. Robiscoe and B. L. Cosens, Bull. Am. Phys. Soc. 11, 62 (1966).

2, z 1
m2 = ——ln ———ln—

3 ~ 18

2869 2 7 1691 132 709
4320 120 120 8640

77 2 1099
432 648 '

2 A 1 A 17 1109
m~= —ln —+—ln ———m +—

3 K 18 tc 36 864 '

13 y 91 , 319
9 v 216

1609 2 287
4320 120

1831 504 607
$ (3) + = 0.215 296,

where

mI.=—ln2- —$ (3)
2 4

and $(3) is the Riemann zeta function. One
notes that the sum of the five diagrams is in-
frared convergent. Using Eq. (1) the addition-
al energy caused by this perturbation to the
2s level of hydrogen and singly ionized helium

is 0.102 and 1.63 Mc/sec, respectively. The
previously calculated estimates of these cor-
rections gave 0.24+ 0.10 and 3.9+1.6 Mc/sec,
respectively. The new exact numbers change
the recent theoretical values given by Erick-
son and Yennie for H, D, and He . Table I
lists these new theoretical values together with
two rows of experimental values which sepa-
rate the old values of Triebwasser, Dayhoff,
and Lamb from new measurements of Robis-
coe and Cosens.
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