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An idealized nonequilibrium mechanism in KCl:OH
has in fact been studied; namely, the forma-
tion of parallel dipole pairs which become non-
alignable because their correlation energy is
greater than the mean available phonon ener-
gy. The classical polarizability relation was
used in this study, and good agreement with
experimental data was obtained using a scale
factor pe = 4.4 Debye unit. These data were
restudied using the p - ~ polarizability data
of Fig. 1, and the curve-fitting p, ~ was reduced
to 4.0 Debye unit.
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An electric field along, say, [100] will remove the
degeneracy of the energy-level diagram (Ref. 6) and al-
ter the polarizability, Eq. (2). The right-hand side of
Eq. (1) is defined for zero applied field, but the dipole
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The value ¹28.6&10~ cm is the "dielectric con-
centration" determined from the linear plot of Eq. (1);
chemical analysis of this crystal indicated ¹36&&10
cm

ASH. Hart and S. Roberts, to be published, have in fact
observed a remanent polarization in KCl:OH that de-
cays in time; these measurements were made below
the temperature of the maximum dielectric constant.
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In the presence of an external electric field, certain Raman-active vibration modes in
diamond-type crystals also become infrared active, giving rise to an absorption propor-
tional to the first-order change in the electronic polarizability per unit cell with the rela-
tive displacement of atoms, BQ. /Bu. We have observed such a transmission minimum and

from its characteristics we have determined the electric-field-induced effective ionic
charge and Ba. //Bu.

In crystals having the diamond structure,
the effective ionic charge of the atoms is zero,
and there is no first-order (one-phonon) reso-
nance absorption of electromagnetic (em) ra-
diation by the fundamental (q=0) optical vibra-
tion modes. Such crystals do exhibit well-de-
fined, although weak, absorption bands due

to higher order electric-moment effects. ' As
shown by Burstein and Ganesan' and by Szige-
ti, ' an externally applied static electric field,
E(0), induces an "effective" ionic charge on

the atoms, so that the q=0 transverse optical

(TO) and longitudinal optical (LO) vibration
modes which are Raman active also become
infrared active. The strength of absorption
is proportional to the first-order change in
the electronic polarizability per unit cell with

the relative displacement of atoms, sn/su,
which determines the corresponding intensity
of the first-order Raman scattering. We re-
port here our experimental observation at room
temperature of an electric field-induced absorp-
tion band at 1336 cm ' in diamond at an applied
field of 1.2x10' V/cm. From the strength of
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n =n + . Bu(j q)+ ~ ~ ~
&p&

Bn
Bu j, q

=n' '+G' '+ ~ ~ ~

where the index j indicates the optical branch
and q is the wave vector of the particular mode
of vibration. When a static electric field E(0)
is applied, the dipole moment induced per unit
cell is given by

M=n E(0) =n"'.E(0)+n"'E(0)+ ~ ~ ~

= M(0) + M(i ) + ~ ~ ~ (2)

where n by definition includes any local field
effects. Since there is no contribution from
lattice vibrations to the polarizability, the stat-
ic and optical-frequency values are essential-
ly the same, i.e., n(0) =n(&p). The first term
of Eq. (2) represents the static electric moment.
The second term represents the time-varying
electric moment which provides the coupling

the induced absorption band, we derive a val-
ue of 4x10 "cm' for Bn/Bu. This represents
the first quantitative determination of an/Bu
for diamond. From this value for Bn/au we
obtain 3x10 ' for the Raman scattering effi-
ciency per unit length of crystal per unit solid
angle Bt 15 800 cm ', the frequency of the He-
Ne laser line.

The effect, which is essentially the same
as that predicted by Condon~ for homonuclear
molecules, and observed experimentally by
Crawford and Dagg" for H, molecules at fields
of 10' V/cm, may be visualized as follows:
An applied electric field induces a dipole mo-
ment in each primitive unit cell. The relative
displacement of the atoms in the q=0 optical
vibration modes produces a change in the elec-
tronic polarizability of the atoms and, conse-
quently, the induced dipole moment varies in
amplitude and orientation at the frequency of
the modes. The induced "effective" ionic charge
is given by e*=aM/au = (an/au)K(0) where M
is the electric moment per primitive unit cell
and u is the relative displacement of the atoms
in the unit cell. A measurement of strength
of the absorption band, which is proportional
to e*'=1(an/Bu)E(0) I', can, therefore, provide
quantitative information about the first-order
Raman matrix elements.

The electronic polarizability can be expand-
ed in powers of the relative displacements of
the atoms as follows:

to the infrared radiation. The p. th component
of M"' can be expressed in full tensor notation
as

M "'=n "'E (0)
p. A.

E 05M j~q
& Bn

(Bug, qi A. g

e *jq5u jq,Po

where p. , X, o designate components along X„
X„and X„ the crystallographic axes, and
summation over any repeated index is implied.
Here

or

$ (~)n (j, q)d (j, q)$ (0)x0,
pA v ' 0 (5)

where $(co), $(0), and d(j, q) are the unit po-
larization vectors for the em radiation, stat-
ic electric field, and (j, q)th phonon, respec-
tively. In addition, one has the usual require-
ment of energy and momentum conservation
for first-order (one-phonon) processes, b, n

=+1, 5+(j, q) =R&u(k), and qj =k= 0. For the
triply degenerate q= 0 optical vibration modes
of the diamond structure, the tensor a&& z
in Eq. (5) is equal to le&&~la where a is the
single independent component of the tensor,
and e&~~ is the I evi-Civita function. ' Thus,
absorption of em radiation will take place when

*(j q)=l .
l

E (o)=- E (o) (4)
Bn

uo ' (Bu(j q)& X pZ, o Z
p, k. , 0.

is a second-rank tensor which represents the
electric-field-induced charge of the atoms,
associated with the particular mode of vibra-
tion (j, q). We neglect, for present purposes,
the effect of the electric field on Bn/au and
on the amplitude of vibration, since these ef-
fects are proportional to E(0)' and only affect
the intensity of the absorption to terms of or-
der higher than E(0)2.

The selection rule for the absorption of em
radiation by a given optical vibration mode is
that M E(&p) e0 where E(&u) is the electric field
of the em radiation. Thus, absorption can take
place, provided the time-varying electric mo-
ment M&" =n"'E(0) has a component along
E(&u), i.e., provided

E((v) n"'E(0)v0
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M "'(j,0) =e *(j,0)d (j, 0), (6)

where m =m/2 is the reduced mass of the two
atoms in the unit cell, and u(j, O, E) and y(j, 0, E)
are the frequency and damping constants of
the (j, q=O)th optical vibration mode in the pres-
ence of an applied field. l" For the diamond
structure, which ha.s a center of inversion,
the variation of v(j, O, E) and y(j, 0, E) will be
quadratic in E(0). They are treated here as
empirical parameters.

Attempts to observe an electric-field-induced
absorption band in a diamond-type crystal were
first carried out on silicon using samples with
Li-diffused P-n junctions. The infrared beam
was passed through the junction region, which
was approximately 1 mm wide, in a direction
parallel to the plane of the junction. No change
in transmission was observed at the highest
reverse-bias electric field (=10' V/cm) that
could be applied without excessive heating.
The inability to observe an electric-field-in-
duced absorption band is due in part to the low
electric field used, and in part to the relative-
ly high background absorption due to two-pho-
non absorption processes (~2 cm ') in the vi-
cinity of the frequency of the q=0 optical vibra-
tion modes. We therefore turned our attention
to diamond, in which higher field strengths are
possible, and in which the background absorp-
tion due to two-phonon processes in the vicin-
ity of 1332 cm, the frequency of the q = 0 op-
tical vibration modes, is relatively small (&0.2

cm ' in type-IIa diamonds).
Transmission measurements were made at

there are components of E(&u), E(0), and z(j, 0)
along the crystallographic axes, which are
mutually orthogonal.

The selection rule for the electric field ab-
sorption of em radiation is the same as that
for first-order Raman scattering if one replaces
E(0) by E(&us), the electric field of the scattered
radiation. Correspondingly the (q= 0) LO as
well as the (q=0) TO vibration modes can ab-
sorb em radiation in the presence of an exter-
nal electric field.

The contribution of the electric-field-induced
(one-phonon) absorption processes to the fre-
quency-dependent dielectric constant is given

ylo& ll

4m' M "'(j,0)M "'(j,0)

pv m . (u(j, 0, E)'-(u'-i(uy(j, 0, E)'

room temperature on a type-IIa diamond plate
in the form of a rectangular parallelepiped
having (110), (110), and (001) polished faces,
kindly supplied by the Diamond Research Lab-
oratory, Johannesburg, South Africa (Fig. 1).
The crystal was mounted in a vacuum cell,
and an electric field was applied between the
(001) faces using evaporated gold films as elec-
trodes. The highest field that we were able
to apply, before arcing occurred at the crys-
tal surfaces, was 1.2x10' V/cm. Unpolarized
radiation from a Globar source was sent through
the crystal along the [110]direction and the
transmitted radiation was analyzed by a Per-
kin-Elmer grating spectrometer (model 12C)
and thermocouple detector system operating
at 13 cps and having an estimated resolution
of 1 cm '. A PAR low-noise amplifier (model
CR-4) and a PAR lock-in amplifier (model JB-
4) were used to obtain optimum signal-to-noise
ratios. In the absence of an applied electric
field, there was no measurable absorption in
the region of 1332 cm 1. In the presence of
a field of 1.2x10' V/cm a transmission mini-
mum with n. T/T = 2.5'fp was observed at 1336
cm with a signal-to-noise ratio of 4 to 1.
The shift of 4 cm ' from 1332 cm ' is larger
than the experimental error and is tentative-
ly attributed to an electric-field-induced shift
in frequency '2'1

For em radiation propagating in the (110)
plane, the nonzero contributions to e»"'(v) are
those for which b (&u), 8 (0), and 8(j, 0) are mu-
tually orthogonal to one another due to the re-
striction p A. t 0. Therefore, for the config-
uration used in this experiment with E(0) along
[001] and q along [ITO], only the component

,
[itoj

[oo i]

FIG. 1. Schematic diagram of the diamond plate used
in the experiment, showing the directions of the ap-
plied field and of the infrared radiation. The dimen-
sions of the plate are a = 3.4 mm, 5 = 8.0 mm, and c
= 0.50 mm.

1053



VOLUME 17, NUMBER 20 PHYSICAL REVIEW LETTERS 14 NOVEMBER 1966

35~ N

S =
~ la I'(n, +1),

PC Gdp
(7)

where cats cubi ~0& ~0 1336 cm ~ ~i 15800
cm ', the He-Ne laser excitation frequency;
np+1 = 1 at room temperature; N is the num-
ber of unit cells per unit volume; and p is t.he
crystal density. We obtain a value of 3x10
for S in agreement with Loudon's theoretical
estimate of 10 ' to 10 based on a deforma-
tion-potential calculation. "

Finally, we calculated a value of Ba/au = 3.8
x10 "cm' for the Q branch hZ=0) vibration
modes of molecular H„using Crawford and
MacDonald's data on the electric-field-induced
infrared absorption. That molecular H, and
diamond have essentially the same eo./su val-

of the em radiation with $(v) along [110]and

the Lo vibration mode with d(j, 0) along [110]
interact. Since only one polarization compo-
nent of the em radiation is active, we multiply
the observed b, T/T by a factor of 2 in obtain-
ing the absorption constant of the electric-field-
induced band. On this basis we obtain AA =9
x 10 'E (0)2 cm i with E (0) expressed in cgs
units. Assuming a band width of 1 cm i cor-
responding to yl /u&1 = 10 ', we obtain e */e
=7x10 7E(0), and so./Bu =4x10 i' cm' per
unit cell.

The Raman scattering efficiency per unit
crystal length per unit solid angle for vibra-
tion modes with q vectors in the [110]direction
can be calculated from Bo/Bu =a using the ex-
pression""

ues must, for the present, be considered as
an interesting experimental fact.
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