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One cannot, however, exclude the possibility that
the S f/2 partial wave resonates.
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As the result of a study to determine a Regge-
pole formula with Mandelstam analyticity for
the elastic scattering of two unequal-mass par-
ticles, ' we were led to raise the following ques-
tion: What are the constraints, if any, that
follow from assuming that scattering amplitudes
satisfy both the Mandelstam representation
and the condition of meromorphism in the right-
half angular momentum plane~ To put it anoth-
er way, are Mandelstam and l-plane analyticity
necessarily consistent in every caseV We find
that if there is to be consistency, one can con-
clude directly that the high-energy limit of the
Regge-pole position, n(~), is necessarily nega-
tive. One also discovers in the unequal-mass
problem some surprising asymptotic require-
ments on the form and size of the Regge "back-
ground term, "which have apparently been here-
tofore unnoticed. Whether these latter require-
ments are consistent or not depends upon the
value of 0 at zero total energy. Considerations
of the type we now discuss may possibly be of
importance in gaining a deeper understanding

of analytic properties in the angular momentum
plane or in detecting subtle deviations from
the Mandelstam r epresentation.

We sketch here the basic argument and refer
the reader to a forthcoming paper for more
details. ' We consider a scattering amplitude
A(s, t), with the usual variables, and the cor-
responding partial-wave amplitude a(s, l). It
is assumed for simplicity that A(s, t) has only
an s-t double spectral function. The amplitude
a(s, l) is assumed to be a meromorphic func-
tion of / in a region that includes Rel & -2+ c
where 0 & «2. We now explore the consequences
of these two assumptions.

Using the Mandelstam version of the Regge-
Sommerfeld-Watson representation, we may
write

A(s, t) = B(s, t)+Q.A (s, t),i R

A =y. (s)v ' Q I ( )(
—I —t/2v),

i ot(v)

where v is the square of the center-of-mass
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momentum (and, hence, determined by s) and

y. (s)v 1 = [2o'.(v)+1]P.(v)/costa .(v),
~.(v)

2 2 2 2

where P (v) is the actual residue of the pole
at I =nt(v). If we include in the summation of
Eq. (1) all Regge poles that reach the region
Rel &-2+& for any s above threshold, s„the
background term B(s, t) will have the property

B(s, t) & const t "'+~ (t-~)
for all s &s,.

Now the heart of our development comes by
imposing upon (1) the requirement of Mandel-
stam analyticity. Neither B(s, t) nor the indi-
vidual pole terms have the correct analyticity,
so we require a cancellation between the back-
ground and pole terms to produce the desired
result (such a cancellation is known to occur
in potential scattering). Our approach, rough-
ly speaking, is the following: We consider a
given pole term in (1) and correct its analytic-
ity in order to bring it into conformity with
the Mandelstam representation. The correc-

tion terms can be evaluated explicitly in terms
of o and y, and the consistency requirement
imposed by simultaneous /-plane and Mandel-
stam. analyticity is that the correction terms
be bounded by t 1/2+ ~ as t- ~ at least for
s & s, [that is, that they be of background size
and, hence, cancellable by B(s, t)].

The simplest way to correct the analyticity
of a Regge-pole term AR(s, t), in (1) is to eval-
uate the absorptive part in the t channel, Dt(t, s),
for v &0 and t »0. From Eq. (1) we deduce
(suppressing the summation)

D (t, s) = ImA (s, t )

A
= -y(v)(- v) sinn nQ (-1-t/2 v);—1 -cv

p(0, t »0, (3)

We see that Dt(t, s) has a cut from v = -t/4 to
v= -~ which is at variance with the Mandelstam
representation. We remove this cut and also
remove a wedge of Dt for»0 in order to in-
state the correct double-spectral-function bound-
ary. The corrected absorptive part Dt can then
be written

1
1

4t dvl & t 1 d/(t tp) dv~
D (s, t) =D (s,t)=, y(s')( —v') si mnn(s')P —1—,——,ImD (t, s),2 ~ v'- v 2v' V —V

where d is a constant and f, is the correct t
threshold. Equation (4) explicitly assumes
equal masses with v=(s/4)-M2. We shall give
the corresponding formula for unequal masses
in a moment. A Regge formula having Mandel-
stam analyticity can now be written

1 ~ df, '
R(s, t) =—,D (t', s).t-t t

Our consistency condition now requires that
R(s, t) AR(s, t) be bou—nded by t 1/2+ ~ for-
asymptotic t. To check this, it is easy to see
that to within terms of order t, the differ-
ence R-AR is asymptotically of the same or-
der as Dt(t, s) Dt(t, s). From Eq.—(4) we con-
clude by direct calculation

D (t, s)-D (t, s)-c t +c t (t-~), (6)
n(~) -3/2

where c, and c, are independent of f. For con-
sistency, we must have a(~) &-2+ e and thus
necessarily e(~) &0. This means that for cer-
tain trajectories of appropriate signature, such

! as the Pomeranchuk trajectory, there will be
ghost states.

In the case of unequal masses, a correction
term in addition to the two given in Eq. (6) is
required. The reason is kinematical, since
for unequal masses, v = [s-(M-tL) ][s—(M+ p. )'] /
4s. This introduces into Dt(t, s) [Eq. (3)] an
additional spurious cut from s =0 to s =1'/u
(1 =M'-11 ) which must be removed. The new
correction term has the form

const, y(s')( —v')r' Z-s-t) s'-s

xsinvn(s')P ! -1-—', ,

where Z =2(M'+ 11'). As t —~ this new term
is proportional to to-'(0)-1. Again in line with
our consistency argument, this term, being
a correction to the Q term in (3) required to
bring about the correct Mandelstam analytic-
ity, must be background size. That is,

a(0)-I & ——,+ e,

a(0) & —,'+ e.
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To summarize, if the scattering amplitude
obeys the Mandelstam representation and is
meromorphic in the l plane for Rel ) —&+ e,
we deduce

A(~) & —2+ E

and, in addition, for the unequal-mass problem

a(0) &-,'+ e.

If either of these constraints is untrue, we have
a basic contradiction. It could be that cuts in
the angular-momentum plane, which we have
ignored, will alter the above conclusions. We

note that if the Pomeranchuk pole can be con-
stituted in an unequal-mass scattering channel,
we have the disagreeable feature that n~(0)
& 2+ & or e~(0) &1 if e & 2. We have no further
insight on these points, but we wish to draw
attention to the issues which these seemingly
str aightforward calculations raise.
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Several years ago, Cook et al. measured the
totalK p cross section from 1 to 4 BeV/c K
lab momentum and observed a broad, low bump
centered at about 1.6 BeV/c (total c.m. ener-
gy 2065 MeV). ' Blanpied et al. ,

' Bock et al. ,
'

and Eberhard and Shively4 have observed bumps
in invariant-mass distributions which may in-
dicate existence of Y*'s with masses above 1900
MeV, but statistical accuracy of and/or agree-
ment among the experiments is poor. Recent-
ly, Cool et al. measured very accurately the
totalK P andK d cross sections from 1.0 to
2.45 BeV/c (1794 to 2411 MeV) and found evi-
dence for a number of F*'s.' Among them are
an isotopic -spin I= 1 Y*(=2030), which we have
previously reported, ' and an I= 0 Y*(=2100),
for which we here give independent evidence.
In addition, we determine the Y,*(2030) to have
spin a,nd parity J& = -',+ and the Y,*(=2100) to
have J = -', . Table I gives our results for the
J=

2 resonances.
The 72-inch hydrogen bubble chamber was

exposed at the Bevatron to a K beam with mo-
menta 1.22, 1.42, 1.51, 1.60, and 1.70 BeV/c.
We found about 30000 events consisting of a
disappearing beam track and an associated V-
like charged decay of a neutral particle. After
kinematic analysis and imposition of other se-
lection criteria, 8408K events (K,'-&++& )
and 14173 A events (A-P+w ) remained. About
half the former areK +P-Ko+n (charge-ex-
change) events; about half the latter are K
+P -A+ m' events. Cross sections and produc-

A(K +P -K'+n) = (A — ' —A — )/2,

A(K +P —A+ w') =A '/W2,

(la.)

(lb)

where superscripts give isospin. Differential
cross sections were expanded in a Legendre
polynomial series

max—=cX' Q a P (cos&),
dQ n nn=0

(2)

where X is 8/q (q is the K c.m. momentum),
0 is the c.m. scattering angle between mesons,
and c is the square of the numerical factor
in Eqs. (1): ~ for K p-KO+n, —', for K +p
—A+ m'. The equation 0 = 4mc~'a, relates o

Table I. Properties of tbe J =
2

resonances.=7

(dp

(MeV)
r

(MeV)

7+

0 7

2030
2120

170
145

0.25
0.25

0.16

tion and (for the Amo events) polarization angu-
lar distributions were measured. Table II gives
the cross sections. Experimental details and
a more complete discussion of results than can
be given here will appear in an Article.

The scattering amplitudes for the two reac-
tions in terms of pure isospin amplitudes are
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