
VOLUME 17j NUMBER 19 PHYSICAL RKVIKW LKTTKRS 7 NovEMBER 1966
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In a recent series of experiments, Patel,
Slusher, and Fleury' (PSF) have shown that
conduction electrons in InAs and InSb give rise
to a nonlinear interaction between the 10.6-
and 9.6-)1 beams from a (q)-switched CO, laser.
The main process they observe is one in which
two 10.6-p, photons (each of frequency {d,) com-
bine to produce two photons, one at 9.6 p, (fre-
quency &u2) and a second at the difference fre-
quency &u3 = 2(d, -(d2 (wavelength 11.8 p, ). A
variety of measurements have indicated that,
in moderately to heavily doped samples, the
mixing process is caused by mobile carriers
in these crystals, rather than the background
lattice. The process is surprisingly strong
for a nonlinear optical interaction.

In this Letter we wish to make two points
concerning these experiments. We show first
that nonlinearities of a classical plasma (one
with a parabolic energy-momentum relation
for the carriers) are far too weak to explain
the observed mixing. Secondly, we propose
that the observed nonlinearity is due to nonpara-
bolicity' of the conduction band, an effect which
is known to be relatively large in crystals such
as InAs and InSb. The nonparabolicity effect
is more than strong enough to explain the PSF
experiments.

Many authors have studied the nonlinear op-
tical behavior of classical plasmas. They show
that in such a medium, two intense optical beams
mix to excite electron density oscillations at
the sum or difference frequencies ((()2a ((), in
our case). The effect is particularly large
when {d2-((), is near the plasma frequency 0)t, .
These driven density fluctuations can, in turn,
Raman scatter a second photon of frequency
~„ to a new frequency, ~, =2~, -co, . The net
effect is a process of the type observed by PSF.
We will show, however, that it is far too weak
to account for the observed mixing.

To estimate the strength of the nonlinearity

described above, we use fluid (cold plasma)
equations to describe the electrons. This ap-
proach is valid when all optical wavelengths
are large compared with the Debye length.
The fluid equations are~
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where &ut)'=47(n0e2/em*, and we have neglect-
ed 1/T compared with (di and &u&.

The third-order current is given by

j (3 ) e[n (0)v(3) +n (1)v(2) +n (2)v(1 )]jr

where v"', v"', and v"' are the plasma veloc-
ity to first, second, and third order in the elec-
tromagnetic fields. However, n"' =0 and it
can be shown that v"' is purely longitudinal.
The transverse part of j"' is thus included in

(4)
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Here n is the electron density in the plasma
and () is its velocity; E =5~i(-,E& exp[i(qi r-(dit)]]
is the (transverse) electromagnetic field of
the optical beams; y is an electrostatic poten-
tial determined via Poisson's equation, V'y
= 4)(e(n-n0), by the deviation of the electron
density from its equilibrium value. An itera-
tive solution of these equations shows that den-
sity perturbations are driven by vx B forces
and are of second order in the electromagnet-
ic fields. The equation of motion for this den-
sity perturbation is
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Here, of course, we are particularly interest-
ed in terms which vary in frequency as +, =2(u,

These currents are the source of the 11.8-
p, field. To estimate the intensity of the 11.8-
p, radiation it is necessary to solve the driven
wave equation. We will postpone this calcula-
tion until we have estimated the corresponding
third-order currents arising from nonparabol-
icity.

We now consider frequency mixing due to non-
parabolicity. Here the crucial point is that
an electron's velocity is a nonlinear function
of its momentum. The momentum of each elec-
tron oscillates at the frequencies of the applied
electomagnetic fields if weak magnetic forces
due to these fields are ignored. However, be-
cause of the nonlinear velocity-momentum re-
lation, the induced current contains mixed fre-
quency components. To estimate the order of
magnitude of this effect, we consider the re-
sponse of a single electron to the electromag-
netic fields. Following Kane, we describe its

motion by the Hamiltonian'

where EG is the band gap and m* is the mass
at the band edge. The velocity is

Finally,
solution

eH (p/m +)
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the equation of motion is p = e E, with

(7)

p=p +ieg f(E /2+ )exp[i(q r-v t)]j0

= p +Ap. (8)

When substituted into Eq. (7), this momentum
generates a third-order velocity; v~s'=-', [n, p Vp]'
xv(po). To find the induced current, we aver-
age v'3'(po) over a Fermi-Dirac distribution
function (this is equivalent to a solution of the
Boltzmann equation) and multiply by the elec-
tron density and charge. The result is the ex-
pression
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where EF =f F'/2m* is the Fermi energy cal-
culated with the band-edge mass. This nonlin-
ear current should be compared with Eq. (5).
The two expressions are similar in form, but
that given in Eq. (9) is much bigger numerical-
ly when the light beams are traveling in the
same direction. Even when Eq. (5) is resonant

(~&+&u =
&ut, ), the ratio is large —about mc'/

eEG&u&T. In InSb this factor, which appears
squared in the final power estimates, is never
less than 10'. Off resonance the ratio is even
bigger, about 10'. In the PSF experiments there
is, of course, some power reflected from the
back surface of the sample which produces op-
posed beams inside the crystal. These drive
the plasma nonlinearity more efficiently, but
the phase-matching condition is badly violated
in this case.

The effect of nonparabolicity is relatively
large because it is an electric field effect,
whereas the classical plasma nonlinearity is

driven by the oscillating magnetic fields of the
light waves. ' It should also be emphasized that
the nonlinearity due to band nonparabolicity
in no way involves the collective behavior of
the plasma. If Lorentz forces are ignored,
the induced currents in the plasma are pure-
ly transverse in the parallel beam geometry,
and frequency mixing occurs only because an
individual electron's response is anharmonic.

To estimate the intensity of the 11.8-p, beam
generated by the nonlinear mixing, one must
solve the driven wave equation..2E&. i 4„,-, &»~.E&» c' Bt' c' Bt

(10)

PSF and Giordmaine' have noticed that the four-
photon process under consideration here is
essentially phase matched. Under these cir-
cumstances the amplitude of E' ' grows linear-
ly with interaction distance l if absorption is
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neglected. One finds that

E 3mn e'l f&u 'r 1+8E /5E t eE

E 2E q ((u / (1+4E /E )'" (m*(u c] '

Here E~, E~, and F~ are the amplitudes
1 2 ".3

of the three beams, which have been assumed
collinear and of parallel polarization. To fa-
cilitate comparison with PSF, it is also con-
venient to rewrite this expression in terms
of a nonlinear susceptibility and the beam pow-
ers. The formula which results is the same
as the equation in their Table I, with g"' de-
fined as

n e 1+8E /5E
(3) . (12)

4(@gal)2E
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As shown in PSF, numerical values calculat-
ed from this formula are in reasonable agree-
ment with experiment. The formula also gives
the correct ratio of susceptibilities for InAs
and InSb. This ratio is more accurately known

experimentally than are the absolute values
of y"'. Finally, Eq. (12) accounts for the mea-
sured variation of P with electron density
in lnAs, for densities above 10"/cc. This pow-
er is proportional to the square of X"' and var-
ies less rapidly than no' because of the second

term in Eq. (12), which reduces the nonlinear-
ity at higher doping levels. Crudely speaking,
this reduction can be thought of as arising from
an increase in carrier mass with doping.

The authors wish to thank P. A. Fleury, C. K.
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The reaction Ci2(d, a)BM has been employed
recently' to study the isospin impurity of N'~

as a function of excitation energy, since the
deuteron, the alpha particle, and the C' nu-
cleus are in T = 0 states. It has been suggest-
ed that since the deuteron is distorted by the
electric field of the target, some admixture
of T = 1 states mill be produced and will contrib-
ute to the observed isospin impurity. A crude
upper limit of 10% was obtained2 for the sim-
ilar reaction Ca (d, o.)K by assuming that
the neutron and proton are completely uncou-

pled in the nuclear Coulomb field.
An adiabatic approximation has been applied

by the author3 to evaluate the polarization po-
tential acting on a deuteron at any distance from

g(r, x) =y(r) 1+ P F (x, r)P (cos8),
I.=o '

where x is the center-of-mass coordinate of
the deuteron measured from the target nucle-
us, the relative coordinate r =rn —rp, the deu-
teron ground state is approximated by

y(r) = (y/2v) e /r,
1/2 yr-

(2)

a fixed point charge. In this Letter we will
show that this previous work' implies a value
for the isospin impurity carried into the reac-
tion by the distorted deuteron, and we will pre-
sent numerical results.

Expanded in relative partial waves, the deu-
teron wave function has the form3
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