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transfer processes producing multiplicity changes.
Evidence now exists that the E-center aggre-
gation process induced by F light in the room-
temperature range involves a photoinduced mi-
gration" which, during its earliest stage, re-
sults in the clustering of E centers. '&" With
further irradiation, M centers begin to form,
some probably located in these cluster regions.
Thus, aggregation, in effect, locally increases
these concentrations.

An E center might behave differently after
excitation depending on whether it is isolated
or whether it lies in a cluster region, which

may or may not also contain M centers. E-
center luminescence might be expected from
the more isolated F centers; energy transfer
with triplet formation, for F centers lying in
cluster regions containing I centers. The rea-
son why energy transfer produces M centers
in the triplet state and does not appear to ex-
cite M centers to states within the singlet sys-
tem is presently not clear.
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Optical nonlinearities due to conduction-band electrons have been observed in InAs,

InSb, GaAs, and PbTe using 10.6-p (&&) and 9.6-p (~2) radiation from a Q-switched CO2

laser. Difference frequencies co3=2u& —~2 at 11.8 p and ~4=2+2-co& at 8.7 p, were mea-

sured for a variety of carrier concentrations at several temperatures.

We have observed optical nonlinearities aris-
ing from conduction electrons in semiconduc-
tors. The 10.6-p ((u, ) and the 9.6-p (cu, ) radi-
ation from a Q-switched CO, laser focused
into samples of single crystal InAs, InSb, GaAs,
and PbTe generates difference frequencies
at 11.8 p, (+,= 2v, -u&, ) and at 8.7 p (&u, = 2+,-+,)

from the above nonlinearity. In addition, in
InAs and GaAs the sum frequency at 3.53 p,

(3(u, ) was observed. The process we describe
is of entirely different origin from the one re-
sponsible for most second-harmonic-genera-
tion' (SHG) and parametric-oscillation' exper-
iments hitherto observed. The latter process
is due to bound electrons and is often called
the "electronic" effect. ' The optical nonline-

arities studied in our experiments seem to be
caused by the nonparabolicity of the conduction
band. The interaction we observe, which in-
volves the closely spaced frequencies &„w„
2

y 2 and 2+,-+„permits near phase -matched
mixing over significantly long crystals.

The Q-switched CO, lasers used were sim-
ilar to the one described earlier. 4 The 10.6-p.
radiation (P transitions of the 0001-1000 band)
and the 9.6-p radiation (P transitions of the
00'1-02'0 band) were focused to produce power
densities in the range 10 -10' W cm, and

peak electric fields of about 10'-10 V cm
in the sample. The confocal distance' in all
samples significantly exceeded the actual crys-
tal length. Power levels were such that changes
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in carrier density due to possible multiphoton
electron-hole pair creation' were judged neg-
ligible in the more heavily doped samples and
in lar ge -band-gap materials. Measurements
were carried out at -300, -80, and -10 K.

Figures 1(a) and 1(b) show the output at 11.8
p, and 8.7 p., respectively, from a 1-mm-thick
sample of n InSb (ne ——10'7 cm s) at -80'K, when

the crystal was irradiated with the 10.6- and
the 9.6-p laser lines shown in Figs. 1(c) and

1(d), respectively. The positions of the 11.8-
and the 8.7-p lines are given accurately by (d,

2+
y

+g and 4 2 2 y re spe ctive ly. With
1 kW (peak) at 10.6 p, and 0.1 kW (peak) at 9.6
p (in all lines) the peak power obtained at 11.8
and 8.7 p from InSb (-80'K) was 1-2 mW.

Figure 2(a) provides strong evidence that
the nonlinear effect described in this paper
arises from mobile carriers. Total 11.8-p,
intensity is plotted as a function of electron
density in n InAs. Care was taken to correct
the experimental data for measured absorption

FIG. 1. Output from 1-mm-thick n-InSb (6x10~6
cm 3, -80'K). (a) Mixed signal at 11.8 p, ; (b) mixed
signal at 8.7 p; (c) input signal at 10.6 p; and (d) input
signal at 9.6 p.

FIG. 2. Total 11.8-p output from n-InAs, (a) as a
function of carrier concentration along with the solid
line showing the calculated output from Eq. (1) normal-
ized at ns = laic cm s, and (b) as a function of length
showing the expected l dependence together with the
experimental points.

at &„&„and &,. The nonlinear effect is
seen to increase with increasing carrier con-
centration. Were the bound electrons respon-
sible for the observed mixing (through a third-
order nonlinearity), P& (corrected for absorp-
tion) should be independent of carrier concen-
tration. Similar results were obtained from
n-InSb for ne )10" cm

It is important to ascertain that the results
obtained in n-InSb, n-InAs, and n-GaAs did not
arise from a two-step process due to a bound
electron nonlinearity, i.e., (a) 2(sI, generation
and (b) subsequent 2(LI,-Co, mixing. We mea-
sured SHG (2LII,) at 5.3 g and the difference
frequency ~,= 2~,-~, at 11.8 p, as a function
of the angle 8 between E&, and the (100)
axis of the n-InAs sample. ' As expected from
the second-order nonlinear susceptibility ten-
sor, X@g"', for 43m crystals, P2&, vanished
for & = 0, but the PuI at 11.8 p (which was al-
ways linearly polarized along the same direc-
tion as E Lo ) showed less than a few percent
variation as ~ was changed through 180 . This
rules out the above two-step process for gen-
eration of the difference frequency, &os (and
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also &e4), due to bound electron second-order
nonlinearity. Additional evidence against the
two-step process is obtained from the obser-
vation of 11.8-p radiation from n-PbTe (-10'K,
and ne ——10" cm ') which is centrosymmetric
and thus produces no second harmonic. The
11 8-p. intensity from PbTe was typically about
10 2 of that obta. ined from n-InSb (ne —10' cm ').
The smallness of this signal can be attributed
to the strong absorption (-20 cm ') in the 10-p
region in our PbTe sample.

The calculated coherence lengths for 11.8-
and 8.7-p, generation at room temperature are
given in Table I for InAs, InSb, and GaAs.
Because of the closeness of » » 2, -&»
and 2, -&» phase-matched mixing is possible
over significant lengths of the crystals even
in absence of birefringence. In Fig. 2(b) we
show the total 11.8-p. intensity which is seen
to vary as l' as expected for phase-matched
mixing.

Since InAs, InSb, GaAs, and PbTe have a
cubic symmetry, the third-order bound-elec-
tron nonlinear susceptibilities, y&&"' are ex-
pected to be relatively isotropic. ' To estimate

these X~g'", we used an extension of Miller's
phenomenological approach" for X&&

'"
ble I(A) gives a summary of our experimental
results for 11.8-p generation in the first col-
umn, along with X"' necessary to account for
the observed P~ /P~ . In the second column
are given the estimated X~& and the corre-

"3. 2 (3)

sponding P~ /P~ . Because of the uncertain-
3 2

ties involved in estimating y~~'3', we compare
only the relative values for different materi-
als. Thus, for InAs and InSb the observed I'~
is -10' times that expected from X~E"'. How-
ever, for GaAs, the observed P~ /P~ near-
ly equals that calculated from y@g "'. This
strongly suggests that in InAs and InSb the
y&&"' cannot account for the observed strength
of the parametric mixing process. Similarly,
the observed power at 3&, cannot be explained
by )(@@"'as seen from Table I(B).

Recent calculations" of the effect of nonpar-
abolic" conduction bands in narrow-gap semi-
conductors predict optical nonlinearities of
nearly the same order of magnitude as those
we have observed. A mobile carrier being
accelerated by an optical electric field expe-

Table I. Comparison between measureda and calculated nonlinear effects in InAs, InSb, and GaAs. The num-
bers in parentheses give the y~ required in each case. P~ = 103 W, P~ = 10 W, focal area = 10 3 cm .

Material c
lcoh

I
Observed

II
Calculated

(bound electron)

III
Calculated

(nonparabolic)

InAs
(n = 2.6 x 1016)

InSb
(

—6 x 1016)

GaAs

(ne ——1.5x 10 )

InAs
GaAs

(d3

2.9 cm
(d4

3 cmd

1 cmf

37 pf

1.3 mm 4.6 mme

(A) P~ /P~

2x10 '
(1.8x 10 10 esu

2x 10
(8 x 10 esu)

2.5x 10-'
(7x 10 ~2 esu)
(B) P3~(/P~

1.5x 10
2.5x 10-"

6x 10-'
(10 ~~ esu)

5x10 8

(4x 10 ~~ esu)
3x ].0-~

(7x 10 ~2 esu)

]p 12

6x 10

5.5x 10
(9.4x 10 ~ esu)

7.8x 10
(5x10 ~ esu)

8.5x 10
(3.8x 10 ~~ esu)

2.3x 10
3.6x 1p

Accuracy of measurements: +30% for P~, andP~; a factor of -3 for P, P, and P3
b

4) g& (d2& (d4~ Mg
P~ is given by(d3 22567t 4(cu3)2 P P

g)
4 (3X ) l ((j2)2

(d
~ G)2 (ds

where c =velocity of light, l = crystal length (l &lcoh), n~, n~, n~ are the indices of refraction, and Q', is the
cross-sectional area.

1coh = w/&k.
From dispersion data available from SHG experiments of C. K. N. Patel, Phys. Rev. Letters 16, 613 (1966).
From index-of-refraction data of O. G. Lorimor and W. G. Spitzer, J. Appl. Phys. 38, 1841 (1965).

f From index-of-refraction data of T. S. Moss, Proc. Phys. Soc. (London) B70, 778 (1957).
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riences an increase in its effective mass, giv-
ing rise to a nonlinear term in its equation
of motion. Solution of this equation of motion
together with Maxwell's equations gives the
following expression" for the field at &, = 2,
-(d

2 ~

3wn e4 l
jV

(d3 (a&& (02 2(m*) cg (d co E

1+ BE /5E

(1+4E F/EG)""

where e is the electron charge, m* is the ef-
fective electron mass at the bottom of the con-
duction band, Eg is the band gap, andEF is
the Fermi energy. The third column in Table I
gives the P~ /P~ and Xnonparabolic calcu

3 2
lated from Eq. (1). The observed and calcu-
lated y"' are in order-of-magnitude agreement
for InAs and InSb. The degree of agreement
is limited by the accuracy to which various
quantities such as P~, P~, P, and the beam
cross-section 8' (see Table I) can be determined
experimentally. Moreover, the observed P~

3
would be smaller than the calculated values
given in Table I if the pulses of P~ and P~
did not occur simultaneously and were not in
the same transverse mode. The above mech-
anism, through its dependence on m* and Eg,
accounts for the observation that the signal
in GaAs is much smaller than that in InAs or
InSb. On Fig. 2(a) where experiment P& vs
ne for InAs (-300'K) is given, the solid lane

y

shows the expected P~ calculated from Eq. (1),
3

normalized at ne ——10" cm '. The agreement
between experiment and theory supports the
validity of the explanation based on the nonpar-
abolicity of the conduction band. Finally, as
shown in Table I(B), the power output at 3&v,

calculated using the nonparabolic mechanism
is in qualitative agreement with the observa-
tions in InAs and GaAs.

We have observed a new type of nonlinear-
ity which arises from the conduction electrons

in semiconductors. This makes possible great-
er flexibility in mixing experiments than in
the experiments with the bound electron non-
linearity, since the conduction electrons are
easily affected by external electric or magnet-
ic fields. We have, in effect, obtained para-
metric amplification of 9.6- and 10.6-p radia-
tion in the 2&,-&, and the 2&,-&, processes,
respectively. It should also be possible, us-
ing a pump at 10.6 p,, to obtain parametric
oscillation at wavelengths close to the pump,
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