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It has been discovered recently that the trans-
port coefficients for classical gases do not pos-
sess simple expansions in powers of the den-
sity n.!1”5 In contrast to the virial expansion
for equilibrium properties, it turns out that
the transport coefficients contain singular terms
of the form »S Inn, where the lowest power s
depends on the dimensionality of the system.
The purpose of the present note is to report
that a similar phenomenon occurs in the quan-
tum-mechanical problem of expressing the ze-
ro-temperature resistivity of a metal as a func-
tion of n;, the concentration of impurities. In
particular, we have shown that the power-ser-
ies expansion for the resistivity p breaks down
at order n;® in three dimensions, and that the

leading term at that order is of the form "i3 Inn;.

The mechanism leading to the breakdown of

the series expansion is fairly easy to understand.

With only minor oversimplification, one can
say that the term in p formally of order nis

is determined by the scattering of an electron
from an isolated cluster of s impurities. This
term must be averaged over all configurations
of the cluster; and for s =3, the resulting in-
tegration diverges at large impurity separa-
tions. The cure for this divergence lies in the
observation that it is not meaningful to speak
of a “cluster” of impurities when the cluster
is of a size larger than the electron mean free
path; i.e., an electron will not propagate as
an unattenuated plane wave between two wide-
ly separated impurity sites. The mathemati-
cal problem, then, is to deduce an effective
cutoff for the cluster integral in a systematic
and consistent fashion.

Our analysis is based on a quantum forma-
lism originally introduced by Edwards® and
developed by one of us (J.S.L.)? for application
to problems in which electron-electron inter-
actions are taken into account. The many-body
aspects of the problem are not significant here,
and will be neglected; but the systematics of
the transport calculation as outlined in the pre-
vious paper” are of crucial importance.

The central result of this formalism is the
expression of the transport coefficient as a
sum of diagrams of the form shown in Fig. 1.
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Each open circle here represents an impurity
site and carries a factor n;. Each wavy line
is the amplitude (¢ matrix) for an electron scat-
tering at an impurity site. The rule is that
the total momentum transfer at an open circle
must be zero. Each solid line represents a
single-electron propagator which we finally
shall have to take to be the exact Green’s func-
tion in the impurity field averaged over con-
figurations of impurities. We have found no
anomalies in the concentration expansion of
the single-particle self-energy function; and
this is consistent with the fact that the classi-
cal expansions break down only for transport
and not equilibrium properties.

The sum of all diagrams of the form shown
in Fig. 1 may be obtained by solving the obvious
integral equation (a sort of Bethe-Salpeter equa-
tion) which, in this theory, transforms into
a generalization of the Boltzmann equation.®
It turns out that the serious divergences occur
in the kernel of this integral equation, i.e.,
in third and higher order contributions to the
irreducible interaction part, W. At given or-
der in n;, the most divergent contributions to
W may be shown to come from the complete-
ly crossed diagrams drawn in Fig. 2(a). To
see the nature of this difficulty, it is conven-
ient to reverse the upper electron lines, ob-
taining the simple ladder diagrams shown in
Fig. 2(b). Such a ladder diagram with s rungs
makes a contribution to W formally of order
at least n;°; and the coefficient of ;5 should
be obtained by letting n; go to zero in each of
the electron lines, i.e., using unperturbed prop-
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FIG. 1. Typical diagram in the expansion of the elec-
trical conductivity.
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agators. If, for demonstration purposes, we
approximate each scattering amplitude by a
constant, say v, then it requires only a short
calculation to obtain for the sth-order contri-
bution an expression of the form
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which, for s =3, has a nonintegrable singular-
ity at k= -Kk’. Here ky is the Fermi momen-
tum, and we have set #=2m =1. It should be
emphasized that the right-hand side of this equa-
tion is correct only when the energy variables
for the two electron lines have small imaginary
parts of opposite sign. This mathematical sit-
uation is characteristic of nonequilibrium cal-
culations and has no analog in equilibrium prob-
lems.

The resolution of the divergence difficulty
is perhaps more obvious here than in the clas-
sical problem. As dictated by the formalism,’
one must correct the single-electron propaga-
tors to account for random scattering in the
impurity field. The important effect of this
correction is the replacement of the small imag-
inary parts +Z0 in the electron propagators by
+iI', where I' is the single-particle relaxation
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FIG. 2. (a) Completely crossed diagrams in the ex-
pansion of the irreducible interaction part W. (b) The
crossed diagrams with upper electron line reversed,

rate, proportional to n; in lowest order. Then
the right-hand side of Eq. (1) becomes
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which clearly contains the desired cutoff. To
continue the calculation, W must be evaluated
for k and k’ near the Fermi surface and inte-
grated over the angle between K and K’. On
performing this integration, we find that the

s =2 term makes a finite contribution of order
niz as expected; but there are corrections to
this term of the form »;*Inn;, n;*, etc. From

s =3 we obtain contributions of the form »;*Inn;,
n;?, etc. Each of the terms for s =4 contains

a contribution of order ;% thus, to obtain the
complete #;* contribution it is necessary to
sum all of the completely crossed diagrams.
These results, including the logarithmic terms,
carry over directly into the final expression
for the resistivity p.

The breakdown of the concentration expansion
for electrical resistivity seems to indicate that
transport phenomena in strongly disordered
systems are more complicated and more dif-
ficult to describe mathematically than had pre-
viously been hoped. The appearance of the log-
arithmic terms in quantum problems seems
especially significant because it opens for in-
vestigation a wide range of physical situations
in which the nonanalytic properties of transport
coefficients may be of importance. We men-
tion as examples electron transport in highly
doped semiconductors, liquid metals, and nor-
mal metals in which the impurities have scat-
tering resonances at the Fermi surface. Need-
less to say, it is not very likely that the coef-
ficient of the term n,;°Inn; can be computed
accurately and compared directly to experimen-
tal data. It may be hoped, however, that the
insight gained in studying these higher order
terms may lead to better and more comprehen-
sive theories.

*Work supported in part by the National Science
Foundation,

tNational Defense Education Act Predoctoral Fellow.

13. R. Dorfman and E. G. D. Cohen, Phys. Letters
16, 124 (1965).

2. V. Sengers, Phys. Rev. Letters 15, 515 (1965).

K. Kawasaki and I. Oppenheim, Phys. Rev. 139A,
1763 (1965).

4J. Weinstock, Phys. Rev. 140A, 460 (1965).

985



VOLUME 16, NUMBER 22

PHYSICAL REVIEW LETTERS

30 MAY 1966

5J. M. J. Van Leeuwen and A. Weijland, Phys. Let-
ters 19, 562 (1965).

8S. F. Edwards, Phil. Mag. 3, 33, 1020 (1958).

'J. S. Langer, Phys. Rev. 120, 714 (1960); see also

J. 8. Langer, Phys. Rev. 124, 1003 (1961), for a more
complete analysis of the many-body aspects of this
problem.

8M. L. Glasser, Phys. Rev. 129, 472 (1963).

SECOND-HARMONIC GENERATION OF LIGHT IN REFLECTION
FROM MEDIA WITH INVERSION SYMMETRY

N. Bloembergen, R. K. Chang, and C. H. Lee
Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts
(Received 2 May 1966)

The second-harmonic generation (SHG) of
light in reflection' has been extensively studied
in crystals lacking a center of inversion.?

In media with inversion symmetry, the sec-
ond-harmonic source terms are smaller in
magnitude and have magnetic-dipole and/or
electric-quadrupole character.® Recently,
reflected second-harmonic light from metal-
lic silver? and from silicon and germanium?
has been reported. Some discussion has aris-
en whether the effect in silver is due mostly

to the free-electron plasma®™ or whether core
electrons contribute significantly to the observed
second-harmonic intensity.’»?»1° It is the pur-
pose of this note to present new theoretical
and experimental evidence that the latter view-
point is correct.

In general one may expect that, if both con-
duction electrons and core electrons make com-
parable contributions to the linear dielectric
constant, they will also make comparable con-
tributions to the nonlinear susceptibilities.!

It is well known that the linear dielectric con-
stant in silver at the second-harmonic frequen-
cy of ruby-laser light contains about equal

and opposite contributions from the intraband
(conduction electron) and interband (core) tran-
sitions.!? A general formula for the nonlinear
source current density incorporates both con-
tributions.’® An expansion into multipole mo-
ment contributions has been made.3>**

For an isotropic medium?!® the important
source terms at the second-harmonic frequen-
cy may be written in the pheonomenological
form

PN (90) = o (B xH) = (o +ac)(_éxﬁ): 1)

pl

NL , e
-v-Q  (2w)=-V- (Bpl +Bc )EE. (2a)
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The divergence of the volume quadrupolariza-
tion may be transformed into a surface term
of the form used by Jha,”

NL

B =+(,,+8 BB, (2b)

with
ﬁpl+BC= _(BPZI+BC,)/(€((D)_1).

All values of the fields should be taken inside
the medium. They are related to the incident
laser field by the linear Fresnel equations.
The magnitude of the quadrupole volume term
is equivalent to that of a dipole term restrict-
ed to a single atomic layer at the surface.

It must be emphasized that these phenome-
nological relationships hold equally well for
free as for bound electrons. Any attempt to
decide on the basis of polarization properties
alone that a pure plasma effect is involved
has no validity. The symmetry properties
of the core electrons are the same as for the
conduction electrons. We have indeed found
that the polarization properties, the variation
with angle of incidence, as well as the magni-
tude of the reflected harmonic intensity from
Si and Ge are very similar to those from Ag,
Au, Cu, and other metals.

The suggestion that the laser beam first cre-
ates a plasma in Si and Ge in our experiments
has been disproved as follows. The reflectiv-
ity of the Si and Ge samples was monitored
with a continuous beam at 6328 A from a He-
Ne laser. No observable change in reflectiv-
ity occurred during the ruby-laser pulse which
created the second harmonic. The induced
plasma density is negligible at the power lev-
els used in our experiment. Furthermore,
the SHG was found to be strictly proportion-
al to the square of the laser intensity. If a



