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In this Letter we point out that useful results
may be obtained by calculating for the classi-
cal Heisenberg model® the high-temperature
expansions in 1/7 of the susceptibility y and
the specific heat C. Moreover, we prove that
to extend the high-T expansion by several or-
ders classically, one need treat less than one-
tenth as many diagrams as for the quantum-
mechanical model. We further note that the
treatment of each of the remaining diagrams
is extraordinarily simplified.

The extension of the high-temperature expan-
sion for the Heisenberg model with arbitrary
spin seems to be highly impractical because
of the enormous labor involved.? Nevertheless,
there exists a considerable need for more terms
in order to study several unresolved problems.
For simple lattices with nearest-neighbor in-
teractions only —for which the number of known
terms? in the series for y and C is six and five,
respectively —there is a need for more terms
in order to treat the singular behavior of both
x and C.* For ferromagnetic spinels with B-B
interactions only, there is a large uncertain-
ty in the estimate of the critical temperature®
T, and the form of the singularity in x (a “3-
power law”?), as obtained by extrapolation
of the known terms.® Unanswered questions
for spinels with both A-B and B-B interactions,
for which only four terms in x are known,” con-
cern which gﬂej of long-range magnetic order-
ing occurs at T, and which of the several va-
rieties of susceptibility (ordinary, “staggered,”
-+ +) provides a reliable estimate of 7.

Now many properties of the Heisenberg mod-
el are rather insensitive to the value of S.

For example, the unresolved problems discussed
in the previous paragraph persist in the limit

of large S. Moreover, it was proposed® that

for the simple lattices, the celebrated form
(T-T,)~*3 of the divergence of x is indepen-
dent of S. Furthermore, Rushbrooke and Wood?
(RW) found that the normalized critical temper-
ature 7T, /S(S+1) is nearly proportional to 11

-1/5(S+1), so that the error in using the S=w
value is small and decreases rapidly with in-
creasing spin—it is ~13% for S=% and only
~29% for S=3. Recently several additional terms
have been obtained by methods which are re-
stricted to spin S=%,1.1° Thus a correspond-
ing extension of the classical calculation may
be expected to complement ideally this recent
advance for the S=3,1 cases.

All pertinent information can be obtained!!
from the zero-field spin-correlation function
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between spins §f and §g localized on the sites
f,& B=1/kT, and 3C is the spin Hamiltonian
for zero magnetic field. The o; satisfy'? (for
1=2)
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where v, =<§f- §gscm>, Uay =<3¢™), and (O)
=tro /trl denotes the B=0 thermal average of
the operator 0.

The RW diagrammatic representation of y;
comes naturally from the fact that 3¢=2,J5;S;- §;
=27j0;j; hence 3¢! is a sum of products 1045,
and each product contains [ factors Oy;. For
each of the [ factors Oy; in the product, one
draws a straight line connecting sites ¢ and j;
the collection of these [ lines corresponding
to the entire product is the diagram associated
with that product. Thus one can write Ky
=2 au(d) =27 gP(d){d), where P(d) is the num-
ber of permutations of the [/ lines in a diagram
d, and (d) = P(d) ™2 (®(-+ - Oj-+-)), the sum
going over all permutations of the factors Oz’j'
Similarly, we indicate a diagram d correspond-
ing to one of the products in v; :<§f- §gZCl> by
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I straight lines (arising from se!) and a wavy
line connecting f and g. Writing vy =2, 7v,(d),
where all d in the sum include the fixed points
f and g, we have a7 =), 7a;(d), with

-1
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k=1 dg, dp

as may be proved from (2) by induction. The
restricted summation Y’ is over all partitions
of d into diagrams d,, dp, such that the sum d,
+dp=d. Equations (2) and (3) are of general
validity and, to the best of our knowledge, are
new. Henceforth, we specialize to the classi-
cal Heisenberg model.

There are three simplifying aspects to the
classical calculation.

(i) The requisite traces® (or averages) become
integrals and may be evaluated in a tractable
closed form.

(ii) The number of diagrams is reduced by
roughly an order of magnitude,'® for one can
ignore all noncontinuous paths'* and trees.

By standard definition a tree, d=d, +d,, may
be partitioned into two diagrams d, and d, con-
nected to each other only at one vertex, an
“articulation point” (see Fig. 1). Now by in-
duction one can prove from (3) that a;(d) =0
for trees and disconnected diagrams d, pro-
vided we first show that (d) =(d,)(d,).*®* This
“factorization” is apparent for d disconnected;
for trees a proof is required. Let vertices
1. *, Py be indy; p1+1) e, D1 +P, be in dy;
and vertex o be the articulation point which

is common to both. We then have
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where I({§i-§j}) is a product with the appropri-
ate §;-§; as factors and i,j are either both in
d, or both in d,. Hence I=1I,1,, where I, and

I, represent the same integrands as in (4;) and
(d,), respectively. Finally, because of isotro-
py, the integral over all spins §; except §, is
independent of the orientation of S,. Therefore
the above integral factors into (d,){d,). This
simplification of being able to ignore the trees
does not exist for the general spin Ising mod-
el (S>3) so that commutativity alone is not
sufficient.®
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FIG. 1. Diagram (a) is a tree; diagram (b) is not.
Both are continuous paths.

(iii) All of the different products I10;; corre-
sponding to the same diagram are equal, so
that the summation over all permutations of
the O;; may be replaced by a simple multipli-
cative factor, P(d). To illustrate the import
of this simplification, we note that 10-line dia-
grams (which are necessary to extend the cal-
culation by three terms) give rise to as many
as 350000 separate averages —each of which
would have to be evaluated individually for the
RW quantum-mechanical calculation!

In summary, then, we have seen that the
actual effort to extend the high-temperature
expansion for general spin is enormously sim-
plified in going to the classical model. Indeed,
the classical calculation for the simple models
through order six required only a few days,
as compared to the several years which were
necessary for the corresponding quantum-me-
chanical calculation. Nonetheless, the labor
in adding just one more term to the classical
series is still considerably greater than the
work in calculating all the previous terms.

We have begun extending the calculation of both
x and C for the simple lattices and the results,
together with their analysis, will be published

elsewhere.

*QOperated with support from the U. S. Air Force.
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UThe zero-field thermodynamic functions (e.g., free
energy, entropy, C and y) follow directly from the cor-
relation function. One advantage (over the RW method)
of the formulation in terms of the correlation function
is that both C and x can be obtained from the same dia-
grammatic calculation. Furthermore there is addition-
al physical information contained in the correlation
function (see, e.g., Ref. 7).

2This is simply proved by multiplying both sides of
(1) by tr exp(—B3C) and expanding everything in powers

of B. The “recursion relation” (2) was first pointed
out by K. Dwight (private communication),

BFor example, there are only 1,1,2,2,5,7,17,27
classical diagrams of [ straight lines ((=2,3,+++,9,
respectively) as against 1,2,4,8, 23,53,>150,>450 cor-
responding quantum-mechanical diagrams. Further-
more, RW required correspondingly 1,2,5,10,31,71,
>200,>600 diagrams, because disconnected diagrams
contribute to their moment expansion, and not to our
Eq. (3); see Ref. 15,

14 continuous path is one which can be entirely
traced out (using every straight line exactly once) from
vertex f to vertex g without lifting one’s pencil from
the paper. This implies that a noncontinuous path has
at least one “odd vertex”’—i.e., a vertex at which an
odd number of lines meet. The odd vertex will contrib-
ute an odd number of spin vectors to the integrand of
v (d), so that vl(a) =0. Similarly, p;(d) =0 for d noncon-
tinuous, so that from (3) it is easy to see that al(E) =0.

E’Singe even quantum-mechanically the factorization
(d) = {dy) {dy) occurs for d disconnected, we have used
the same inductive argument to prove for the quantum-
mechanical Heisenberg model the ‘“linked cluster’” the-
orem, o (d)=0 for disconnected d. (A disconnected
diagram is a diagram which has parts not connected to
each other by any lines.)

18That trees can be ignored classically may appear
to be merely a special case of F. Englert’s result
[Phys. Rev. 129, 567 (1963)] that trees (“reducible dia-
grams”’) may also be ignored for the quantum-mechan-
ical calculation and for the general spin Ising model.
However, our diagrammatic representation (which is
more akin to that of RW) is essentially different from
Englert’s.
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