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In the elastic region, 4m'&s & (2m+ p, )', there are no singularities in Eqs. (8) and (9). For (2m
+ p, )'&s & (2m+ 2p, )', the term V(P, v(p);P'-co(P')) develops a logarithmic singularity in the integra-
tion region. It presents no essential difficulty, but the numerical calculations become somewhat
harder. These results have been obtained and will be presented later.

Finally, to obtain the scattering amplitude, the (a& contour of integration in Eq. (6) is also rotated
and the integration of g(P) and f(P, im) is performed. There is a singularity in the integral which
is removed by calculating the second Born term explicitly and numer'cally integrating the function
f(P, (u) —V(P, &u;P, 0)/V(s). In the elastic region the second Born term has only an imaginary part,
and it is computed exactly to guarantee that unitarity is satisfied.

The numerical results agree with those of Ref. 1 to within our numerical error of about 5/o. The
error was estimated by increasing the number of mesh points in the integration by a factor of 2.
The equations were solved numerically on a CDC-3600 computer. Nearly all of the time is spent
inverting the matrix for the kernel which requires about 20 sec for a 100x100 matrix.

We are investigating the application of these equations to the nucleon-nucleon and pi-pi systems
and to the calculation of Regge trajectories. A comparison will be made with the more convention-
al N/D approach and with the Blankenbecler-Sugar~ approximation to the Bethe-Salpeter equation.
It is hoped that the present equations will better represent the physical situation because of the in-
clusion of some inelastic effects.
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Recent application of the algebra of integrated
current components' to weak and electromag-
netic phenomena indicate that although the as-
sumed commutation relations between the in-
tegrated currents seem to be correct, the as-
sumption that the sum rules obtained are satu-
rated by very few intermediate states is, at
least in some cases, inadequate. In particular,
one of the immediate consequences of the suc-
cessful Adler-Weisberger sum rule' is the re-
sult that the nucleon cannot be properly described
as a member of the 56 representation of SU(6)
[and SU(6)&j and that its positive-helicity state
is not purely in the (6, 3) representation of U(3)
CSU(3).

In this paper we show that the Adler-Weis-
berger sum rule is approximately saturated
by a set of states consisting of the —,

'+ octet,
the 2+ decuplet, and an additional multiplet of
negative-parity baryon resonances. Using this
assumption we are able to calculate the correct
values of three experimentally measurable quan-
tities: G&, the axial-vector coupling constant
in P decay; G*, the strength of the axial-vec-
tor transition between the nucleon and the first
resonance N~(1238); and the d/f ratio for the
axial-vector current of the baryon octet. These
three results are obtained by adjusting one free
parameter, without any experimental input.

The Adler-Weisberger sum rule' for the strange-
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ness-conserving currents can be written in
the form

l~ ) =G u(P)y y u(P)
A p 5

x [o,d . . + (1-o)f. . ],ijk sjk '

i,j,k = 1, ~ ~ ~,. 8; p. = 0, 1, 2, 3.

(2)

The wrong predictions for G~ and G* indicate
that in order to saturate the sum rule me must
include some contributions of the next higher
states, especially N*(1512, J =

& ); F,*(1405,
); 1'o*(1520, jp = 2 ), etc. An analysis

of the experimental contributions to the inte-

Gg is the axial-vector coupling constant, f~
is the decay parameter of the charged pion,
g is the pion mass, v and g are the total n+p

and m P cross sections, and k and v are the
momentum and energy of the pion in the labora-
tory system. Adler and Weisberger show that
G*', the contribution of the first nucleon reso-
nance to the integral in Eq. (1), calculated from
the experimental cross sections in the resonance
region' is approximately 1, leading to G~ -1.4.
It is consequently clear that the contributions
of higher states are not negligible and any sat-
uration assumption must take them into account.

We also know that if we assume that the sum
rule, when evaluated between any two states
of the baryon octet, is always saturated by the
states of the octet and the decuplet, we obtain
the well-known, incorrect results I G~ I

= 5/3,
G*' = 16/9 (instead of the experimental values

G~ =1.18, G*'-1). This last saturation assump-
tion is equivalent to the classification of the
J =&+ octet and the J =2 decuplet in a 56
multiplet of the SU(6)~ algebra of currents and

to the assignment of their A, =+—,
' states to the

(6, 3) representation of U(3)SU(3) where X is
the helicity. In fact, the same values for Gg
and G* are obtained even if me consider only
the system of nonstrange baryonic states and
the chiral (isospin) U(2)SU(2) algebra, assum-
ing that the nucleon and N*(1238) saturate the
sum rule between the N-N, N*-N, and N*-N*
pairs of states. The only additional informa-
tion obtained from considering the U(3)SU(3)
algebra is the prediction a =0.6, where n is
related to the axial-vector f/d ratio via the
following definition of the axial-vector current:

grals of Eq. (1) and to the analogous sum rules
obtained for the strangeness- changing currents4
shows indeed that these additional states con-
tribute terms of the same order of magnitude
as the contributions of the decuplet. ' It is then
clear that if we still want to suggest that the
sum rule is saturated by a few states, these
states will fall into a larger representation of
our algebra of currents which will necessarily
include both positive-parity and negative-parity
states. Such a representation may be reducible
and the nucleon will then have components in
more than one irreducible multiplet with a well-
defined mixing parameter which can be fixed
by the experimental values of G~, G*, and e.

We evaluate the sum rules between particle
states moving in the z direction with infinite
momenta. Following Dashen and Gell-Mann, '
we observe that the z components and the time
components of the vector and axial-vector cur-
rents form an algebra U(3)SU(3)SU(3)SU(3)
which includes both the chiral U(3) SU(3) and
the collinear U(3)SU(3). However, it can be
shown that at infinite momentum the matrix
elements of the z components of the vector and
axial-vector currents are equal to those of the
time components and the results of the tmo dif-
ferent U(3)SU(3) algebras are essentially equiv-
alent. "' One can extend this algebra of currents
to include all: U(12) currents which commute
with the Lorentz transformations in the z di-
rection, forming a collinear U(6)SU(6) current
algebra for states mith infinite momentum.
The pesitive-parity currents of this U(6)SU(6)
are the usual generators of SU(6)~. Since the
currents involved here are of both positive and
negative parity, they can connect states of equal
parities or states with opposite parities. Con-
sequently, the contributions of negative-parity
as mell as positive-parity intermediate states
should be taken into account for any sum rule.

It should be remembered, however, that for
negative-parity baryonic states the W spin may
differ from the ordinary spin, and the assump-
tion that a certain SU(6)~ multiplet is needed
for saturating a given sum rule is not complete
if we do not specify what are the "ordinary"
total spins of the states or how me construct
them by starting, say, from a simple, naive
quark model. We shall later come back to this
question. Meanwhile, we observe that some
interesting results can be derived even before
me discuss this problem in detail. Let us con-
sider the Adler-Weisberger sum rule and eval-
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uate it between X =-,' states of the baryon octet.
The lowest. lying U(3)SU(3) multiplet is clear-
ly the positive-parity (6, 3) which includes the
usual octet and decuplet. To these we want to
add some negative-parity states. A glance at
all the experimentally observed states of this

, kind indicates that in all cases they can be ac-
commodated in SU(3) octets and singlets. ' This
leads us to the assumption that the only addi-
tional states which are needed for saturating
the sum rule are in the (3*,3) or (3, 3*) repre-
sentations, possibly with a variety of W' spins
or even various "orbital" angular momenta L.'
We therefore consider a set of X = —,

' states in-
cluding a (6, 3) and some (3*,3)'s and (3, 3*)'s,
and we assume that the Adler-Weisberger sum
rule, evaluated between any two states of our
system, is always saturated by all possible
intermediate states belonging to the set. We
then notice that the matrix elements of the time
component of the axial-vector current between
any two (3*,3) or (3, 3*) representations are
always symmetric, i.e. , of D type. Consequent-
ly, if we mix the basic positive-parity (6, 3)
representation together with a (3*,3) having
any combination of L's, the total E-type con-
tribution to GA will be proportional to the amount
of (6, 3) in the initial and final states. Defining

ga and gs in the usual way,

U"5 g E 1—a
= (3)"'g + (-'. )'"g; ——=—=, (3)A'a's'3gD

s

we obtain

G~ = (k)'"g /(1-a)

If we then define a mixing angle for the baryon
octet, such that

I B)= cos8 I (6, 3), L = 0)

consequently,

G* = (8/3)G (1—a).
A

(9)

I W = 2, A. =+2) =
~ IS= 2, X =+2)

+ -', &2IS =-„X=+-,') (10)

If we assume that the sum rule is saturated,
in addition to the usual octet and decuplet, by
the ectet with J = 2 and —,

' (obtained either
from S= ~, L= 1 or from Sq

—-1, S&= 2, L =0)
and by additional SU(3) singlet states, we ob-
tain"

G =-,'(4 cos'8+1); G* = —,
' cos8;

a = (2 cos~8+ 1)/(4 cos'8+ 1),

Equation (9) can be directly tested by exper-
iment. Substituting the experimental values

GA =1.18, cv =0.65, we find" G*=1.05, to be
compared with Gexptl*- 1.

Encouraged by this result, we proceed to the
discussion of the different possibilities of creat-
ing the negative-parity (3*,3) i, = -,' multiplet.

The simplest assumption will be that the nu-
cleon have components in a 8'=-,' octet which
may belong to a 70 or 20 of SU(6)W. Both cases
or even certain linear combinations of them
are consistent with the (3*,3) assignment for
the oz =+—', state, and the (3, 3*) assignment for

A negative-parity 8' = —,
' baryon may

have, in principle, any total spin. The exper-
imental data hints that the lowest lying nega-
tive-parity baryons have J = ~, & . We there-
fore suggest that only these states are needed.
This corresponds to a three-quark state with
"intrinsic spin" S =

~ and "orbital angular mo-
mentum" L =1 coupled to J=-,', 2, or to four
quarks and one antiquark having S =1, S—=-,',

1 g g
and W=2. Such a W=&, X=+-, state can be writ-
ten as"

+ sin8 I (3",3), any L + (3, 3*),any L),

we obtain

g =(2/v3) cos'8
a

and

G = 2 cos'8/3(l-a).
A

Furthermore, since the (3*,3) contains no

SU(3) decuplet, we find

G* =-~ cos8,

(5)

(7)

(8)

where 8 is the mixing angle defined in Eq. (5).
We find that for 8=37,

G = 1.18; G*=1.05; (y = 0.65.

This should be compared with the experimen-
tal values' GA

——1.18+ 0.02; G~-1; ~ =0.67
+ 0.03 (Brene, Hellesen, and Roos) or 0.63 (Wil-
lis et al. ). The prediction for a is not very
sensitive to the mixing angle, and even 8 =0
leads to the reasonable value n = 0.6. It is in-
teresting, however, that the mixing changes
a in the right direction and the right order of
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magnitude. The value for G* is much more
sensitive to 0 and the agreement with experi-
ment is much more significant. It is interest-
ing to notice that the same value for G* can
be derived by using the U(2)SU(2) algebra with-
out assuming anything about the strangeness-
changing currents.

The results of this calculation indicate that
a relatively small number of baryonic states
saturate the Adler-Weisberger sum rule and
that by finding the correct mixture of states
all three measurable quantities can be calcu-
lated with satisfactory success. The assump-
tions that we have used still leave the door open
for assigning our additional negative-parity
states to either a 20 or 70 of SU(6)~. Such
an assignment may be necessary for calculat-
ing the d/f ratio for the anomalous magnetic
moments of the baryon octet and other electro-
magnetic transitions. As emphasized by Gell-
Mann, '" this requires a deeper understanding
of the role played by the so-called "orbital an-
gular momentum" L. It is clear, however,
that an appreciable amount of mixing is needed
in order to explain the existence of the anom-
alous moments. '
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