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in an isovector state. The effective ~ ~ coupling
is found to be

=2V f f (m ) '(m '-m ')
(d 7I7l pÃ7l (d p (d M p

From (6), (15), and (17) we then get r(u —rr +7r )
= 0.10 MeV, in agreement with the experimental value
C.A. H. Rosenfeld, A. Barbaro-Galtieri, W. H. Barkas,
P. L. Bastien, J. Kirz, and M. Boos, Rev. Mod. Phys.
37, 633 (1965)]. (b) I'(p —ny). Evidently, the photon
coupled to the p~rr vertex by g(p m' y) of (9) is an iso-
scalar photon, while that coupled to the ~'7[ vertex
byg((u'x y) an isovector photon. Introducing fp at the

p -y junction (isovector photon) and f~i at the rd'-V

junction (isoscalar photon) from (14), and taking mp
=m~1, we see that the two amplitudes are identical,
corresponding to the view that r p +&' is followed
by p y and +' y [M. Gell-Mann, D. Sharp, and

W. G. Wagner, Phys. Rev. Letters 8, 261 (1962)].
Thus, the x y+y decay-interaction energy density
is given by
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where the superscripts designate the isoscalar and
isovector natures of the photon fields. From the ob-
served lifetime of the x meson, we get

[g(p ~ y)m ] /4rr=7. 5x10

We then obtain

r(p'- ~'+y)

=(6m) i[g(pozoy)m ]2[m (m ) i-m (m ) i] m
7T p 7l 7t p 7[

= 0.10 MeV.

Evidently, I"(p x +y) = r(po 7ro+V). The experi-
mental upper limit for the width is 0.70 MeV (F. S.

Fuson et ai. , to be published). (c} r(~ —
w +7). From

(15) we findg((u7r y) =3g(porr y}. We then obtain r(rd pro

+y) = 1.0 MeV, in agreement with the experimental val-
ue (Rosenfeld et al. , loc. cit.). It should be empha-
sized that this value is specifically a result of the p-u
mixing in SU(6) symmetry. (d) I'(q p+y) = 0.30 MeV.
It is interesting to note r(y w +V) = 0. The widths
of other decays are rather small and not recorded
here.

The direct use of the PCAC hypothesis such as em-
ployed here leaves no possibility for assigning values
to the form factors in (19), and any appreciable devia-
tions from unity in their values would, in general, be
very ambiguous. This particular value, however, re-
sults from

[(27 ) /4n']K (0}= 3.3[K (0)]
p Z71 p7t~ NNx

of Ref. 4 when the value for (ypzz)2/4n is introduced.
Note that the form factor E«„(0) should be in the
above. The rather large deviation from unity in (19)
is, of course, subject to the validity of the assump-
tion that the p dominates completely the isovector
charge form factor of the pion. The value in (19)
should be regarded within this context, and not as a
true evaluation of the particular product of the form
factors. The same assumption is essentially used in
the present work through (17) and the assumption of
SU(6) symmetry. The author wishes to thank Profes-
sor S. Okubo for a discussion of this point.

~~Rosenfeld et al. , Ref. 9.
~ This can be justified by arguing that the amplitude

for q y+ r++ m in the lowest order perturbation
would be that due top p +p followed by p m++m

~3Gell-Mann, Sharp, and Wagner, Ref. 9.
~4Deduced from Rosenfeld et al. , Ref. 9. See also

F. S. Crawford and L. R. Price, Phys. Rev. Letters
16, 333 (1966).
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Of considerable interest in the theory of weak
intera. ctions are the magnitude of Gp, the vec-
tor coupling constant in beta decay, and the ratio
(G&-Gp)/G&, where G& is the coupling constant
for muon decay. The presently accepted value
for this ratio is (2.2 +0.1+ 0.5)%.' s It has been
used in discussions of the conserved-vector-
current hypothesis and of the suggestion which

arises out of Cabibbo's theory of leptonic de-
cays, that the vector coupling constant for be-
ta decay and that for lb SI = 1 decays can be ex-
pressed as G p, cos8 and Gp sin8, respectively.
The accepted value of Gp has been deduced from
the accurately measuredft values of some pure
Fermi beta transitions between J = 0+, T = 1

isobaric states. For this purpose an average
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ft value has been used, together with the rela-
tion G p IM I'(ft ) = 2@%7in 2/mesc' with tMI, the
Fermi nuclear matrix element, assumed equal
to M2. The result' ' is G =(1.4034+0.0016
+0.0070)X10 "erg cm'.

Some degree of confidence in the above pro-
cedure for calculating Gp has come from cal-
culations' indicating that charge-dependent ef-
fects do not significantly affect the nuclear ma-
trix elements, and from the observation that
the experimentally measured ft values for a
number of Fermi transitions (A =14 to 54) have
been found to show a remarkable degree of
consistency, encouraging the inference that
they are in fact all equal. This observation
has supported the assumption that corrections
to the nuclear matrix elements are indeed neg-
ligible, and in particular that there are no ef-
fects due to mesonic exchange, in accordance
with the conserved-vector-current hypothesis. '
It is the purpose of this paper to show evidence
that there may, however, be significant varia-
tions among the ft values, indicating the possi-
ble existence of effects which could seriously
influence the currently accepted value of Gp.

The seven cases of pure Fermi decays for
which ft values have been obtained with an ac-
curacy of better than 1'% are listed in Table I.
In the calculation of f values, allowances have
been made for electron screening' and for fi-

nite nuclear size. Radiative corrections, using
the formula of Kinoshita and Sirlin, have al-
so been applied to the ft values; the systematic
uncertainty of +I%%uo in this formula is not included
in the individual errors quoted, but is shown
in parentheses against the mean value.

It can be seen that the ft values in Table I
are on the whole very consistent, the standard
deviation of the unweighted mean for the seven
decays being less than c%%uo. However, the ft
value for "~Al could have been attributable
to experimental errors in the first measure-
ment, ' and we have therefore made the second,
independent measurement shown in the table
for the decay ' Al(P+)"Mg. The techniques
adopted were different from those previously
used' for this case. The beta end point was
deduced from a threshold measurement, by
the same method as used in the Harwell mea-
surements on the five nuclei from 3 Cl to ' Co;
the ' Al half-life was measured using two
different reactions to produce the activity.
Details will be published elsewhere.

The new measurements for " Al agree very
closely with the previous results, confirming
a significant difference (1.4% and six standard
deviations) from the mean of the other six ft
values. The result is thus unlikely to be due
to experimental errors, and we are led to ex-
plore other possible explanations for this ap-

Table I. ft values for Fermi beta decays.

Decay
Beta end point

(keV)
Ha1,f-lif e

(msec)
fg valuea

(sec)

$4O( p+) 14Ng

26m Al(P+)"Mg

34C] (P+)34S
42Sc (P+)42C a
46V(p+)46Tl

"Mn(P+) "Cr
54C (P+)54Fe

1812.6 + 1.4
3208.0 + 2.3
3207.8 + 1.9
4459.7 + 4.0
5409.0 + 2.3

6041 + 7
6032.1 + 2.2
6609.0 + 2.6
7227.7 + 3.8

71360+90
6374+ 16
6376 +6
1565 +7

683.0 + 1.5
424+ 2

425.9 + 0.8
285.7+ 0.6
193.7 + 1.0

3127+10b
3086 + 12c
3086 +8d
3138 ~19e
3122 + 9e
3138 + 25f
3131~8e
3125 +9e
3132 + 17e

Mean: 3123+7(+31)

aIncluding radiative corrections of 1.7% for 0, decreasing to 1.3% for 5 Co (see Ref. 8).
Measurements of R. K. Bardin, C. A. Barnes, %.A. Fowler, and P. A. Seeger, Phys. Rev. 127, 583 (1962).

cHarwe]. l measurement; beta end point from Q value for 6Mg(p, z) ~A1 (see Ref. 9).
dPresent work.

Harwell measurements; beta end points from (p, p) thresholds calibrated with Th(C'+Q) n particles. For
details see Ref. 2.

fMeasurements of J. Janecke, J. H. Miller, and D, C. Sutton, Phys. Letters 6, 69 (1963).
gFirst error shown is the standard deviation of the mean; the error in parentheses represents an additional

systematic uncertainty due to radiative corrections.



VoLuME 16, NUMBER 21 PHYSICAL REVIEW LETTERS 2~ M~& 1966

parent anomaly with its implication of varia-
tions among the ft values.

Considering first the case of Al, we note
that the nucleus is in an excited state in a mass
region where strong nuclear deformations are
known to occur. The effect of nuclear defor-
mation on the f value, which has been calculat-
ed assuming a spherical charge distribution,
requires investigation. However, an error of
the order 1% on this account seems improbable,
since the f value is quite insensitive to varia-
tions in the nuclear-radius parameter; the to-
tal correction to the point-charge calculation,
allowing for finite nuclear size, is only 0.6%
in the '~Al case. ' If a difference in the dis-
tortions of the parent and daughter nuclei were
sufficient to cause a significant nonoverlap of
the wave functions, this would have the effect
of reducing the magnitude of the nuclear matrix
element, and, therefore, of increasing the ft
value above that expected with complete over-
lap. Thus this effect could not explain the ob-
servation of a smaller-than-average ft value
fo 26PlAl

Other effects, which may influence all the
cases studied, are the following: (1) Charge-
dependent effects,- arising either from Coulomb
forces or from the specifically nuclear forces,
produce mixing of nuclear states, with some
consequent modification of the nuclear matrix
elements. Such effects would be expected to
be in the direction to reduce the matrix elements
and hence to increase the observed ft values.
Thus, if the major part of the apparent ft-value
variations were to be accounted for by charge-
dependent effects, the ' Al matrix element
would require the least correction and the cor-
responding ratio (Gp-Gp)/Gp would then be
~(1.6+0.1+0.5)%.' However, a number of
calculations, notably those of Blin-Stoyle,
Mair, and Papageorgiou, ' suggest that the mag-
nitudes of charge-dependent effects are too
small to explain variations as large as 1.4%
in the j"t values. (2) Radiative effects have been
taken to be about (1.5+ 1.0) % (see Ref. a in
Table I). The error in this va, lue is an estimate'
of the uncertainties. associated with the appli-
cation of a cutoff in the correction formula,
and with strong-interaction structure effects.
These latter effects have not yet been accurate-
ly estimated, '&" but are not expected to be large. '
In seeking an explanation of our experimental
observations we are concerned not only with
the absolute values of the radiative corrections,

but also specifically with their relative mag-
nitudes for different nuclei. The question has
to be considered whether nuclear structure
effects could produce variations of the same
order as the corrections themselves. (3) If
mesonic exchange effects were responsible
for the observed ft-value fluctuations, then
the conserved-vector-current theory would
be invalidated. However, the calculations of
Blin-Stoyle, Nair, and Papageorgiou' imply
that in this event the exchange effects would
introduce considerably larger differences be-
tween the ft values than we observe.

We conclude that there are unexplained dif-
ferences between the ft values of pure Fermi
beta transitions, and that the value of the vec-
tor coupling constant Gp deduced from the mean
of these ft values may consequently be subject
to significant corrections.

The value of the Cabibbo angle 0 deduced
from Gp will also be affected by any such cor-
rections. Without them the present spread
of ft values corresponds to a, range in 8 from
0.17 (for ' Al) to 0.21 (for the mean of the
other six cases). The uncertainty in the radi-
ative correction may introduce a displacement
of up to 0.02 in each of these values. From
data on t&81=1 decays, Cabibbo and Willis
et al."have obtained 8 =0.26, but some more
recent calculations, "based on Kes data, have
suggested 8 -0.22.

*Present address: Physics Department, The Univer-
sity, Manchester, England.

The first error quoted is the experimental uncertain-
ty; the second error represents the systematic uncer-
tainty in the radiative corrections [see below and
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Recently'~' there has been interest in the application of the Bethe-Salpeter' equation to the calcu-
lation of scattering amplitudes of strongly interacting particles. Even in the ladder-graph approx-
imation the equation is difficult to solve because it becomes singular whenever one or more of the
particles in the ladder is on its mass shell. Schwartz and Zemach' have developed one calculation
scheme; however, their method seems to be limited to energies in the region of elastic scattering.
Morris2 and Taylor4 have suggested ways to eliminate all the singularities by a complicated set of
transformations. We present here a method which is simpler than theirs and guarantees that uni-
tarity is exactly satisfied in the elastic region. Furthermore, the equations can be used above the
inelastic threshold, and the calculations there will be presented in a future paper.

In the following we limit ourselves to the p theory. Following the notation of Lee and Sawyer, '
the Bethe-Salpeter equation for the scattering of two particles of mass m is given by

Tt(p, R;p, N; S)

=V (p, &u;p', u&') if dv"f, -dp" V (p, &u;p", ~")G(p" e"s)T (p" e" p' &u's), (1)

where the scattering amplitude is obtained from

t (s)=(2/m) P(P +m ) e i s5=nT (P, 0;P, 0;s),
2- -2 2 1/2 i5 (2)

and P = [(s/4)-m2]'~2. The total center-of-mass energy is s, and the potential is taken to be the ex-
change of a scalar particle of mass p, ,

(
p i) 2A ~ip +p + p' LE' (4) (0 )

)l ' ' '
m ti 2PP'

The Green's function is the product of the two free-particle propagators,

G(P, v; s) = ([P'+ m'-is-((u+ 24s)'][P'+ m'-ie-((a&-2/s)']) (4)

The equation is shown synibolically in Fig. 1. Hereafter we suppress the angular momentum index l.
In analogy to a scheme suggested by Noyes' for removing the singularity of the Lippman-Schwing-

er equation, let

T(p, &u;p, 0;s) =f(p, u';s)t(s),

and denote the Born approximation by

V(s) = V(P, 0;P, 0).
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