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P scattering. —The same type of analysis
starting with the I= 2 and I= —', amplitudes leads
to the differential cross sections

Thus we see that diffraction peaks in each
isospin channel provide a natural explanation
of the observed "anomaly" in the charge-ex-
change scattering. No spin-flip amplitude has
been needed to fit the data up to t = -0.4. The
spin-flip amplitude may play a role for larger
values of t and cause the seconda. ry peaks, as
in the case of elastic scattering. ' The measure-
ments of relative phases and polarization will
decide whether the present mechanism or the
spin-flip hypothesis causes the near-forward
peaks in charge-exchange scattering.
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Again one can fit the data extremely well (Fig. 2)
by the following choice of the parameters:

n =—9, ial'=30, lril~1;

C, =0.2, C, =2.3, C, =7.3.

The phase measurements of elastic and charge-
exchange amplitudes given by Foley et al ~

'
are not accurate enough to fix pp If pp ls known,
one can again predict y(t), as in Eq. (5).
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In this Letter we present an analysis of the
meson-nucleon, nucleon-nucleon, and nucleon-
antinucleon total cross sections. The analysis
is based on Regge trajectories whose factorized
reduced residues are related by SU(3) symme-
try. Thus, in this respect our treatment is
basically the same as that of Barger and Olsson'
but with some minor differences. Furthermore,
we make the additional assumption of exchange
degeneracy with respect to the signature as
hypothesized by Arnold. ' The trajectories to
which we apply this hypothesis are, however,
not exactly the same as those chosen by Arnold,
and we assume that the residues, as well as
the trajectory functions, exhibit this degeneracy.
Our aim is to show that the experimental data
on total cross sections are in agreement with

this hypothesis, thereby raising the possibility
of reducing the number of parameters in Regge-
pole phenomenology.

It can be shown, ' under rather general assump-
tions, that the nucleon-nucleon and nucleon-
antinucleon total cross sections depend only
on the exchange of four sets of quantum num-
bers specified by vacuum, p, w, and R. This
is also the case for kaon-nucleon cross sections.
For the pion-nucleon case, the exchange of the
quantum numbers of w and R does not contrib-
ute due to the G-parity conservation. In the
Regge-pole model these four types of exchanges
are in the form of Regge trajectories. Note
that there may be more than one trajectory for
a given set of quantum numbers.

Now it is well known that the vector mesons
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[p(760), K*(890), y(1020), &o(783)] form an
SU(3) nonet with e-y mixing. Here we take
the mixing angle to be such that the Gell-Mann-
Okubo mass formula is exactly satisfied. Name-
ly, we have

K* p Vs

ics. The combination of the p and R trajectories
was used by the present author in an attempt
to explain the nP charge-exchange cross sec-
tions. Here we assume that the amount of sin-
glet-octet mixing for the tensor mesons is again
such that the mass formula is exactly satisfied.
Namely,

where V, (and V, ) are related to v and y by
the mixing angle 8V.

IV )=cos8 ly)+sin8 I&u),

IIV )=-sin8 Iy)+cos8 I&a). (2)

with

4m, ' =m '+3m
2 8

ITS)=cos8 Is0)+sin8 I f ),

IT&)= —sin8 Is )+cos8 I f ).

(5)

Thus, we find cos8& =0.77, ~& '=0.86 BeV',
my =0.79 BeV'. We associate each memberj
of the octet (p, K*, V,) and the singlet (V, ) with
a Regge trajectory —the same mass formula
(1) being satisfied among the members of the
octet of the trajectories at any fixed angular
momentum J. In a manner similar to Barger
and Olsson, ' we take the SU(3)-symmetric in-
teractions between the vector mesons and the
pseudoscalar and baryon octets at the forward
direction to be given by

L =&2y (M[V, M]),

=W2y (fg[V, B])+dN(V, B]))

+W2q Vl(BB), (3)

where yM and y~ are the reduced factorized
residues of the vector octet coupling to the me-
sons and nucleons, respectively, and g~ is
the corresponding residue for the vector-me-
son singlet coupling to the baryons. Here M,
V, and B stand for the 3x 3 matrices for the
appropriate octets as given by Ne'eman, 4 and

() means the trace over the SU(3) indices. From
(3) one finds

Here we find cosOT = 0.88, nzT '= 2.15 BeV',
= 1.73 BeV . As pointed out by Arnold,

if we consider the mesons as bound states of
BB systems in a bootstrap picture, the exchange
part of the forces due to the two baryon sys-
tems is expected to be weak. Drawing the anal-
ogy with the potential scattering case' would
thus indicate that trajectories of opposite sig-
nature and 6 parity should be degenerate. (One
can also consider qq instead of BB with a simi-
lar result. ) Using these arguments, we expect
that the trajectories associated with p, K*,
ps, and V, to be almost overlapping with the
corresponding A„K*', T„and T, trajectories,
respectively. By the same reasoning we expect
that (apart from the signature factors) the cou-
plings yM, y~, etc. , for the vector and tensor
cases should also coincide. A straight-line
approximation to the trajectories together with
the above degeneracy hypothesis also determines
the trajectory intercepts. The p-R, K*-K*',
Vs-T„and Vy Ty trajectories based on the
straight-line approximation are given in Fig. 1.

p Kp KV, M' KV, V,

8 1

where, for example, y stands for the fac-
torized coupling of the p Regge pole at the for-
ward direction and at the pmm vertex.

Similarly, the tensor mesons' [A, (1310),
K"(1430), s, (1525), f,(1250)] are also expected
to form a nonet. The A, meson belongs to the
R trajectory and was predicted by Pignotti'
from the SU(3) symmetry and bootstrap dynam-
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FIG. 1. p-R, X+-K~, V8-T8 and Vg-Tg tra, jectories.
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For the intercepts, at t = 0, we figd

e =a =0 5, n =o. =0 35,

n =n =0 30, o. =n =015.
~8 Ts

' T, V,

Let us observe that the equality of intercepts
and couplings of p and R implies equality of
pp and pn total cross sections. This equality
would be expected to hold even independent
of SU(3) and is in reasonable agreement with
the high-energy data.

Now in a manner similar to the vector me-
son case one can write the interactions to be
of the form

L = &2yM(M(T, M)) + v 2 r1
T 1

(MM),

L — = 2 y. (f(B[T,B])+d (B(T,B)))

(7)

Kp KN KP MNK8

MN Kl'

'K- ="K'N"KP' (4f "y yNR 8

M N Kp ~MV Kl'

o + ——21' I'+ —~~ (4f-1)y

MN Kl'

m,
= N' NP. :(f-'—)'yN'

N8

N Np N Nl'

0 = 2I' 'R
PP N NP'

+ W2q T
1
(BB),

from which we find

yK =-'Wy
T =-WKT =yM

(8)
2R

yN Np ~N N1'

g = 2I' 2R
Pn N NP (10)

yKT T M' PR N'

(9)

In addition to the above, we use the Pomeran-
chuck trajectory with intercept ap = 1 and with

couplings I'„, I"&, and I'N in the same manner
as Barger and Olsson. ' Note that there can
be no contribution from any trajectories with
quantum numbers other than what we have con-
sidered.

Now with the trajectory intercepts known from
Eqs. (7) we are left with eight parameters (I ~,
I'K, I'N, yM, yN, qM, AN, and f/d) which are

.fitted to the experimental data on the cross
sections. In terms of these parameters the
total cross sections are given by

' — =" 'N' P':"f 1)yMyH 8

M N vp ~M~N w1'

MyN np M~N m1'

=2r r~ +-,'(4f-1)y y~K p K

Note that the above formulas imply app = op„
= constant and aK+p =a-+ in reasonable agreeK pl

ment with the experimental data. In Eq. (10)
we have used f+d =1; and, for example, R„p
is given by

1/2 2 2-Q
w r(o. +-.) s-m -m

p m N

mp s"'q r(n +1) s
FN p 0

where we take, as usual, s, = 1 BeV'; and in
terms of the laboratory momentum of the inci-
dent particle (the pion, in this example), we
have

1/2

s-m -m =2m (p '+m ')' '.
m N N m

The experimental data" and the theoretical
curves from fitting the eight parameters are
given in Fig. 2. The numerical values of the
parameters and their estimated errors are

I' = 2.87+ 0.02, I' = 2.22+ 0.02,
7r

I' = 4.94+ 0.02, y = 1.10+ 0.07,
M

y = 1.18+ 0.09, f/d = —1.90+ 0.1,

M N Kp ~M~N Kl' = 2.90+ 1.0, q = 2.17 + 0.8. (12)
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