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CURIE LAW FOR ANDERSON’S MODEL OF A DILUTE ALLOY*
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The question of the existence of localized free energy
magnetic states for Anderson’s nondegenerate, F==kTInZ (3)

extra-orbital model' of an impurity in a dilute
alloy has been extensively investigated recent-
ly.2~* Most of this work involved the approxi-
mate calculation of Green’s functions which
were then used to determine the magnetic prop-
erties of the impurity.® Here we study this
model for the case of weak s-d (conduction-
band-extra-orbital) mixing, by making a direct
expansion of the free energy in powers of the
s-d interaction. We find that the susceptibility
determined from this expansion of the free en-
ergy exhibits a Curie-law behavior at high tem-
peratures. The corrections to this behavior
contain a logarithmic divergence at low tem-
perature similar in structure to the perturba-
tion results for the Kondo resistivity anomaly.®
The sign of this correction reduces the suscep-
tibility below the simple Curie-law value, the
reduction becoming larger as the temperature
is lowered. We conclude that the nondegenerate
Anderson model can exhibit a Curie suscepti-
bility, characteristic of the existence of local-
ized moments, at high temperature if the s-d
mixing is weak.”

In Anderson’s model the impurity is repre-
sented by an extra d orbital embedded in an
s band of conduction electrons. In the zero-
order Hamiltonian we include, besides the sin-
gle-particle d and conduction-band energies
€1 =€q+ MHS and €5, =€y +pHs, the Coulomb
interaction U between two electrons on the d
orbital:

HO =Z;ksﬁksnks +Z>sedsnds * Und&"d&' (1)

Here s=1 or -1 for spin 4 or spin ¥, respec-
tively, u is the Bohr magneton, and H the ex-
ternal magnetic field. The s-d mixing
v =Eks (chksTCds * Vk *Cdstcks) )

is treated as a perturbation. Here ngg =CksTCks
and n;jg =Cy4TCys are the occupation-number
operators for the band state of momentum &
and spin s and the extra-orbital d state of spin
s, respectively. The operators C satisfy the
standard anticommutation relations.

Treating V, Eq. (2), as a perturbation, the

can be obtained from the well-known expansion
of the partition function

0
Z =Tre BH°[1+ > ffd)\lfoxldxz-..fo)‘”"ldx
n=1 C

X V(xl)V(AZ)- .. V(xn)], (4)

where 8 =1/kT and

AH,  —AH,

Vi) =e ove

The susceptibility is then given by

=—(3%F /3H?)| (5)

H=0

For the case of interest, in which €4 lies be-
low the Fermi level and €; +U above the Fer-
mi level, the zero-order susceptibility is

x‘°’=xp+#2/kT- (6)

Here y, is a temperature-independent conduc-
tion-band contribution and the second term is
the Curie-law contribution of the noninteract-
ing impurity.®

The lowest order correction to the free en-
ergy is second order in V, and from Eq. (4)
one gets

f. n f. n
Fm:Z'Vk |2|: ks 0 N k-s ds
ks
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+

Here ng, ngs, and ngg are the zero-order oc-
cupation probabilities for zero, single-particle
of spin s, and double-particle occupation of
the d orbital, respectively,

ng= l/Zd’ % =exp(—B€dS)/Zd,

ndd=exp[—/8(ed* t€4 +U)]/Zd’

Z =1+exp(-Be ) +exp(-8 )

d €av
+exp[-—B(ed* i +U)],
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and fpq = [exp(Beks +1]-L Carrying out the momentum sum by assuming a constant density of states
N(0) over a bandwidth +W about the Fermi energy, and replacing |V > by an average 1V 2, we find

€ds €d s+U €ds €ds+U }
2) 2 _¥s -
F N(O)IVIZ{nOIn T re +ndsln Ve T +ndsln W e +nddln Wi T (8)
S das d-s ds ds
From this,® the second-order contribution to y is
2u? (1 1 1 1 )
2) =—E_N(0 2f —_ — )
X kT Orvi € ed+U+W+ed+U W+ed (9)

If the conduction-band width W is large com-
pared with le;| and €;+U then the susceptibil-
ity correction (9) can be written as

x® = (u?/RTIN(0)J, (10)
with an effective antiferromagnetic coupling

between the localized orbital and the conduc-
tion-band electrons,®°

J:ZIVIZU/ed(€d+U). (11)

Continuing the perturbation expansion, the
dominant fourth-order contributions involve

processes of the type
ldh)~ kA ) = |dVYRIYEA) ~ | BA) ~ |db)
and ,
|d4) = |oA) ~ | dVYRI YA Y = | dVRYAR ) - | d4).

Here hole states are denoted by barred %’s.
The low-temperature logarithmic singularities
to which these processes lead arise from the
near energy degeneracy of the initial |d4) and
intermediate |d¥%’Vk4) states when the particle
k%t and hole &’V are close to the Fermi surface.
Carrying out the A integrations in (4), we find
for these processes

1 1 2
F@ L 2 2 _ )(
ZIVk| le’l(e € +U+e ,/ \e

kR'

In the important region where 2 and &’ are near
the Fermi surface, the first bracketed term

in (12) is simply J?/4. Making this substitution
and carrying out the 2 and k2’ sums, we find

to logarithmic accuracy

F@~[~(uH)?/2eT)N(O)JP InkT/W)  (13)

and

X9~ =(u2/kT)[N(0)J In(eT/W). (14)

Combining these results, Egs. (6), (10), and
(14), the susceptibility is

X~ Xy * (12/RTH1 +N(0)J +[N(0)J P In(eT/W)}. (15)

Here J is given by (11), N(0) is the unperturbed
single-particle conduction-electron density of
states, and W is an effective bandwidth. In
higher order there are selected processes which,
in perturbation theory, contribute to y terms

of the form (u2/ET)N(O)J[N(0)JIn(eT/W)J*. It
appears that these terms can be represented
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(1—fk')fk,*nd’ (l—fk+)fk'+nd+ ) )
a e € N Ty T Ty S T T T
by writing!?
oo p? N(0)J ]
X xp+kT[1+l—N(0)J1n(kT/W) : (16)

Since J is negative, this perturbation result
fails to converge when T is less than W exp[1/
N(0)J]. Before this temperature is reached
the paramagnetic contribution to y changes sign
and the expression (16) gives an unphysical
result. Here we are primarily interested in
the high-temperature region where the straight
perturbation result, Eq. (15), is appropriate.
It is clear that in this region the nondegenerate
Anderson model exhibits a Curie-law behavior
characteristic of a localized moment.
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We report here measurements of electron
tunneling through thin AIN films in which the
imaginary component of the propagation vector
in the forbidden band has been determined as
a function of energy from the dependence of
the tunneling current upon insulator thickness.
The relationship so derived agrees well with
Franz’s empirical relationship® for a material
with the 4.2-eV forbidden-band energy of AIN.
These results allow the prediction of voltage-
current characteristics over the entire range
of experimental variables with no arbitrary
adjustable parameters, and also subject to sev-
eral internal self-consistency checks. In each
case complete consistency is observed. To
the authors’ knowledge, this represents the
first unambiguous demonstration of such con-
sistency in thin-film tunneling.

AIN films were made by treatment of fresh-
ly evaporated Al films in a N, glow discharge
at a pressure of 200 p for 3 min. Mg counter
electrodes were subsequently evaporated through
a mask. The entire procedure is similar to
that used for ALO, samples.? Measurements
made at room, liquid-nitrogen, and liquid-heli-
um temperatures gave essentially identical
results.

Previously, current-voltage data have been
interpreted by fitting the observed character-
istic of a structure with a particular insulator
thickness to a theoretical model which assumed

the dependence of 2, the imaginary component
of the propagation vector in the insulator for-
bidden band, on E, the energy below the con-

duction-band edge, to be given by

E=h2k2/2mi*. (1.1)
The entire behavior of electron tunneling is
dominated by the exponential attenuation of the
electron wave function in the forbidden gap of
the insulator. Hence a detailed understanding
of the process can only come when the energy-
dependent attenuation coefficient 2 of the wave
function is known accurately. By far the most

direct and unambiguous method of obtaining
the value of &k is by the variation of the current
density as a function of insulator thickness.

In the case where (1) the tunneling current
I per unit area can be considered as propor-
tional to the product of the tunneling probabil-
ity and an effective number of electrons within
one of the metals incident on the barrier pre-
sented by the insulator per unit area per sec-
ond with energies near the metal Fermi level
and with transverse momenta near zero, and
(2) the barrier can be considered as trapezoidal,
then, for low voltages, I is linear with applied
voltage V and is given by®

I=A(V/x)exp[-2k(0)x], (1.2)
where 2(0) is the average value of # encountered
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