MIXING EFFECTS IN BARYON SPECTROSCOPY

G. Altarelli

Istituto di Fisica dell'Università, Florence, Italy

and

R. Gatto

Istituto di Fisica dell'Università, Florence, Italy and Sezione di Firenze dell'Istituto Nazionale di Fisica Nucleare, Florence, Italy

and

L. Maiani

Istituto Superiore di Sanità, Roma, Italy

and

G. Preparata

Istituto di Fisica dell'Università, Florence, Italy (Received 30 March 1966)

In this note we discuss the effects of mixings with negative-parity resonant states on the axial couplings of stable baryons. In particular we show that the proposed spin-excitation scheme of higher resonances, according to the noncompact extension U(6, 6),¹ does not lead to quite satisfactory predictions. A similar conclusion holds, although less strongly, for the alternative suggestion of L excitation according to the noncompact O(3, 1).² Consideration of other possibilities seems to favor a classification of negative-parity resonances according to (20, L=1)⁻, as originally proposed³ and discussed recently in connection with mixing effects.⁴

In a previous paper⁴ we considered the saturation of the chiral $U(3) \otimes U(3)$ algebra⁵ with a set of baryon states corresponding to (56, L=0)⁺ and (20, L=1)⁻ of SU(6) \otimes O(3). We found that the mixing effect between the two configurations could renormalize the D/F ratio and $-G_A/G_V$ with the correct signs indicated by experiment, leading to the relation

$$-\frac{G_A}{G_V} = \frac{1}{3} \frac{D+F}{D-F}$$

in agreement with experiment. The derivation, in Ref. 4, was based on a straight algebraic solution of the current-algebra equations. We follow here the simpler procedure used by Cabibbo and Ruegg,⁶ who also discuss the mixings with $(20, L=0)^-$ and $(70, L=0)^-$.

Let us first consider the mixing of $(56, L = 0)^+$

with $(56, L=1)^{-}$. The interest of such a possibility is linked to theoretical speculations on a possible noncompact extension of the orbital angular-momentum group O(3) into O(3), 1). One would then expect an *L*-excitation "tow er" of baryonic states belonging to $(56, L=0)^+$, $(56, L = 1)^{-}$, $(56, L = 2)^{+}$, etc.² The lowest lying negative-parity states would be classified according to (56, L = 1). For each fixed helicity we consider the decomposition of these states into representations of the collinear group $[U(3) \otimes U(3)]_{coll}$.⁷ Such representations constitute a basis for the reduction of the reducible $[U(3)\otimes U(3)]_{coll}$ representations into its irreducible components. The physical states are a superposition of such irreducible components, compatible with SU(3) invariance and [for masses degenerate inside each supermultiplet of $SU(6) \otimes O(3)$ also with conservation of total angular momentum J (particle spin). The decomposition of the states of (56, L = 0)and (56, L = 1) according to $[U(3) \otimes U(3)]_{coll}$ is shown in Table I. States of definite J are obtained as well-determined superpositions from the representations indicated in Table I. For instance, in the (56, L = 1) the octet states (6, $3)_8$, where the lower index 8 indicates that we are taking the SU(3) octet combination, have been obtained by combining an orbital angularmomentum component $L = 1, L_z = 0$ with a quark spin $S = \frac{1}{2}$, $S_z = \frac{1}{2}$. Similarly the states $(\underline{3}, \underline{6})_8$ come from $L = 1, L_{Z} = 1$ and $S = \frac{1}{2}, S_{Z} = -\frac{1}{2}$. To obtain octet states with $J = \frac{1}{2}$ we must further combine with the appropriate Clebsch-Gordan

Table I. Decomposition of the states of $(\underline{56}, L=0)^{\pm}$, $(\underline{56}, L=1)^{-}$, $(\underline{70}, L=1)^{-}$ and $(\underline{700}, L=0)^{-}$ according to $[U(3) \otimes U(3)]_{\text{coll}}$. The $[U(3) \otimes U(3)]_{\text{coll}}$ representations are denoted as $(\underline{n}, \underline{m})$. The helicity is called h, and L_z is the z component of the internal orbital angular momentum. In the decomposition of $(\underline{700}, L=0)$, 15^{S} corresponds to the Young tableaux $\square \square \square$ and 15^{m} to $\square \square$.

	$(\underline{56},0)^{\pm}$	$(\underline{70}, 1)^{-}$			(700, 0)			
$h = \frac{5}{2}$ $h = \frac{3}{2}$	 (<u>10</u> , <u>1</u>)	$(\underline{10,1}) \\ (\underline{6,3})$	 (<u>10, 1</u>)	•••	$(\underline{8}, \underline{1}) \\ (\underline{3}, \underline{3}^*) \\ (\underline{6}, \underline{3})$	 (<u>8</u> , <u>1</u>)		$(\underline{15}^{s}, \underline{3}) \\ (\underline{10}, \underline{8}) \\ (\underline{35}, \underline{1}) \\ (\underline{10}, \underline{1})$
$h = \frac{1}{2}$	(<u>6,3</u>)	(<u>3,6</u>)	(<u>6,3</u>)	(<u>10, 1</u>)	$(\underline{3}^*, \underline{3})$ $(\underline{3}, \underline{6})$	(<u>3, 3</u> *) (<u>6, 3</u>)	(<u>8, 1</u>)	$(\underline{10}, \underline{1})$ $(\underline{6}, \underline{15}^m)$ $(\underline{6}, \underline{3})$ (24, 2)
L_{Z}	0	1	0	-1	1	0	-1	$(\underline{24},\underline{3})$

coefficients:

$$|\underline{8}, J = \frac{1}{2}, h = \frac{1}{2} \rangle = -(\frac{1}{3})^{1/2}(\underline{6}, \underline{3})_8 + (\frac{2}{3})^{1/2}(\underline{3}, \underline{6})_8.$$

The orthogonal combination will, of course, represent $|8, J = \frac{3}{2}, h = \frac{1}{2} \rangle$.

The renormalization of the matrix elements of the axial generators between states of the stable baryon octet [from their SU(6) values] is due to the mixing of the octet part of ($\underline{6}, \underline{3}$) originating from ($\underline{56}, L = 0$) and the above combination. We write

|stable octet baryon \rangle

$$= \cos\theta(\underline{6},\underline{3})_8 + \sin\theta[-3^{-1/2}(\underline{6},\underline{3})_8 + (\frac{2}{3})^{1/2}(\underline{3},\underline{6})_8].$$
(1)

The relative weights of the couplings D and F in different representations of $[U(3) \otimes U(3)]_{coll}$ are reported in Table II. With these weights we obtain for the mixture $(1) F = \frac{2}{3}(\cos^2\theta - \frac{1}{3}\sin^2\theta)$, $D = \cos^2\theta - \frac{1}{3}\sin^2\theta$, or, equivalently, the predictions

$$\frac{D}{F} = \frac{3}{2}; \quad -\frac{G}{G_{V}} = \frac{5}{9}(4\cos^{2}\theta - 1) \le \frac{5}{3}.$$

We thus find that for the mixture of $(\underline{56}, L = 0)^+$ with $(\underline{56}, L = 1)^-$, the D/F ratio is not renormalized from its SU(6) value $\frac{3}{2}$, whereas $-G_A/G_V$ is possibly reduced from its SU(6) value of $\frac{5}{3}$. As for the octet-decuplet transitions we note that the decuplet part of $(\underline{6}, \underline{3})$ originating from $(\underline{56}, L = 0)$ can get mixed with the J $= \frac{3}{2}$ decuplet obtained by suitably combining the decuplet parts $(\underline{6}, \underline{3})_{10}$ and $(\underline{3}, \underline{6})_{10}$ originating from $(\underline{56}, L = 1)$. The matrix elements depend on the new mixing parameter and cannot be related to the matrix elements in the stable baryon octet. We next consider the mixing of $(56, L = 0)^+$ with $(70, L = 1)^-$. Classification of the negative baryonic resonances according to (70, L = 1)was considered by Dalitz.⁸ The decomposition of (70, L = 1) into representations of $[U(3) \otimes U(3)]_{coll}$ is shown in Table I. From these states one can form two octets with $J = \frac{1}{2}$ which can both get mixed to the $(6, 3)_8$ originating from (56, L = 0). The stable octet baryons can be written as

|stable octet baryons \rangle

$$= \alpha (\underline{6}, \underline{3})_{8} + \beta [-3^{-1/2} (\underline{6}, \underline{3})_{8} + (\underline{2})^{1/2} (\underline{3}, \underline{6})_{8}] + \gamma [-3^{-1/2} (\underline{3}, \underline{3}^{*})_{8} + (\underline{2})^{1/2} (\underline{3}^{*}, \underline{3})_{8}], \qquad (2)$$

with the coefficients α , β , and γ satisfying $\alpha^2 + \beta^2 + \gamma^2 = 1$. The presence of two independent parameters does not lead to any constraint between the values of $-G_A/G_V$ and D/F. Also no relevant restriction is obtained for the octet-decuplet transitions, due to the mixing between the $J = \frac{3}{2}$ decuplet of $(\underline{56}, L = 0)$ and the $J = \frac{3}{2}$ decuplet of (70, L = 1).

Finally, we discuss the mixing of $(\underline{56}, L = 0)^+$ with $(\underline{700}, L = 0)^-$ and $(\underline{56}, L = 0)^-$. The theoretical reasons suggesting a possible relevance of $(\underline{700}, L = 0)$ and $(\underline{56}, L = 0)$ for classifying negative-parity baryonic resonances are connected to the proposal of a noncompact extension of the rest symmetry $U(6) \otimes U(6)$ according to the group U(6, 6).¹ The proposed ladder representation of U(6, 6) for the baryons contains the $U(6) \otimes U(6)$ representations $(\underline{56}, 1)^+$, $(\underline{126}, 6^*)^-$, $(\underline{252}, \underline{21}^*)^+$, etc. The lowest negativeparity excited states would then belong to $(\underline{126}, 6^*)^-$ which breaks up into the SU(6) representations $\underline{700}^-$ and $\underline{56}^-$. The mixing of the basic $(56, L = 0)^+$ with a $(56, L = 0)^-$ does not produce any deviation from the SU(6) predictions for the axial matrix elements. Thus $D/F = \frac{3}{2}$ and $-G_A/G_V = \frac{5}{3}$ for such a mixing. The study of the mixing of $(56, L = 0)^+$ with $(700, L = 0)^$ requires a more lengthy calculation. The content of the <u>700</u> of SU(6) in SU(3) \otimes SU(2) is {in the notation [SU(3) representation, J]}:

$$700 = [\underline{35}, \underline{5}] \oplus [\underline{10}, \underline{5}] \oplus [\underline{35}, \underline{3}] \oplus [\underline{27}, \underline{3}] \oplus [\underline{10}, \underline{3}]$$
$$\oplus [8, \underline{3}] \oplus [27, \underline{1}] \oplus [10, \underline{1}] \oplus [10^*, \underline{1}] \oplus [8, \underline{1}].$$

One sees from Table I that the octet states with $J = \frac{1}{2}$ are a combination of $(\underline{6}, \underline{15}^{m})_{g}$ and $(\underline{6}, \underline{3})_{g}$. To determine such a combination we calculate the ratio D/F of $(\underline{10}, \underline{8})$ which must coincide with the D/F of the $J = \frac{3}{2}$ octet, as evident from the above helicity assignments. The required combination of $(\underline{6}, \underline{15}^{m})_{g}$ and $(\underline{6},$ $\underline{3})_{g}$ is then identified as being orthogonal to that combination of the same tensors bearing the same value of D/F. The calculated weights of D and F for $(\underline{10}, \underline{8})$ and $(\underline{6}, \underline{15}^{m})$ are shown in Table II. The stable octet baryons can finally be written as

|stable octet baryons \rangle

$$= \cos\theta(\underline{6}, \underline{3})_{8} + \sin\theta[\frac{1}{2}\sqrt{3}(\underline{6}, \underline{15}^{m})_{8} - \frac{1}{2}(\underline{6}, \underline{3})_{8}], \quad (3)$$

giving

$$F = \cos^2\theta - \frac{1}{3},\tag{4}$$

$$D = (9/5)\cos^2\theta - \frac{4}{5},\tag{5}$$

and, after eliminating $\cos^2\theta$,

$$-\frac{G_A}{G_V} = \frac{D+F}{9F-5D}.$$
 (6)

Equations (4), (5), and (6) do not compare satisfactorily with experiment⁹ (the mixing tends to reduce both G_A/G_V and D/F). The more complex situation of a simultaneous mixing

Table II. Relative weights of the couplings D and F in the octet component of different representations of $[U(3) \otimes U(3)]_{coll}$. The normalization is $D + F = -G_A/G_V$.

	$(\underline{3}, \underline{3}^*)_8$	(<u>3</u> *, <u>3</u>) ₈	(<u>6, 3</u>) ₈	(<u>3, 6</u>) ₈	(<u>10</u> , <u>8</u>) ₈	$(\underline{6}, \underline{15}^m)_8$
F D	0 -1	0 +1	$\frac{\frac{2}{3}}{+1}$	$-\frac{2}{3}$ -1	1 <u>6</u> 5	- <u>7</u> - <u>7</u> 200

of $(56, L=0)^+$ with $(56, L=0)^-$ and $(700, L=0)^-$ again leads to the same predictions.

The above argument makes, in our opinion, the proposal of excitation of higher resonances according to the U(6, 6) extension¹ not very useful. The proposal of excitation following the O(3, 1) noncompact extension,² suggesting (56, L = 1)⁻ for negative-parity resonances, fails in reproducing a renormalization of D/F as a mixing effect. Mixings with a possible (20, L = 0)⁻ or (70, L = 0)⁻ are discussed by Cabibbo and Ruegg⁶ and do not lead to correct predictions. Mixing with (70, L = 1)⁻ is not sufficiently predictive to allow for definite conclusion. The choice of (20, L = 1)⁻, proposed in our earlier papers,^{3,4} seems so far to be the most favorable one.

We would like to acknowledge useful correspondence on the subject with Professor N. Cabibbo.

²See report by A. Salam, in <u>Proceedings of the Ox-</u> ford International Conference on Elementary Particles <u>Oxford, England, 1965</u> (Rutherford High Energy Labo-

ratory, Chilton, Berkshire, England, 1966), p. 241. ³R. Gatto, L. Maiani, and G. Preparata, Phys. Rev. 142, 1135 (1966).

⁴R. Gatto, L. Maiani, and G. Preparata, Phys. Rev. Letters 16, 377 (1966).

⁵M. Gell-Mann, Physics 1, 63 (1964).

⁶N. Cabibbo and H. Ruegg, to be published; see also H. Harari, to be published, for a simple method of derivation.

⁷D. V. Volkov, Zh. Eksperim. i Teor. Fiz. – Pis'ma Redakt. <u>1</u>, No. 5, 9 (1965) [translation: JEPT Letters <u>1</u>, 129 (1965)]; F. Buccella and R. Gatto, Nuovo Cimento <u>40</u>, 684, (1965); H. G. Dosch and B. Stech, Z. Physik <u>189</u>, 455 (1966); H. Ruegg and R. Speiser, to be published.

⁸R. H. Dalitz, <u>Proceedings of the Oxford Internation-</u> <u>al Conference on Elementary Particles Oxford, Eng-</u> <u>land, 1965</u> (Rutherford High Energy Laboratory, Chilton, Berkshire, England, 1966), p. 157.

⁹W. Willis, in Argonne National Laboratory Report No. ANL-7130, 1965 (unpublished), p. 175, gives D/F= 1.7±0.3, corresponding to $\alpha = D/(F+D) = 0.63 \pm \substack{0.03 \\ 0.04}$; N. Brene <u>et al.</u> [Phys. Letters <u>11</u>, 344 (1964)] give α = 0.67±0.03. Equation (6), for $-G_A/G_V = 1.18\pm0.02$, gives $\alpha = 0.581\pm0.002$. The relation obtained with the choice of (20, L = 1) gives instead $\alpha = 0.640\pm0.001$, in full agreement with data.

¹Y. Dothan, M. Gell-Mann, and Y. Ne'eman, Phys. Letters <u>17</u>, 148 (1965).