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conversion we calculate that our over-all de-
tection efficiency for q- zo+y+y is 4/6 of that
for q-3n .To correct our published' deter-
mination of R, we multiply it by the correction
factor C-=[1+ (4/6)x] '=0.46.' We thus obtain
the result, Eq. (1).

*Work done under the auspices of the U. S. Atomic
Energy Commission.
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~Our result of 4/6 for the relative detection efficien-
cy for g m +y+y andy 3x is insensitive to our es-
timate that, for m(e+e ) &30 MeV, we have x=—(pg/p~)
= 1. For x & 1, the relative efficiency is (4/6)+0. 097(x
-1). Thus if we took x-1= +0.5, the correction factor
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Similarly we correct our rate for 3x plus x yy by
multiplying it by (1+x)/[I+ (4/6)x) =1.27. There is no
correction for the yy mode. Our corrected eta-decay
ratio for 1(neutral)/I (charged) is 1.83+0.57, in rea-
sonable agreement with the average value 2.5+0.4
from Ref. 4. The same correction factor applied to the
results of Foster et al. 3 gives I'(neutral)/I'(charged)
= 2.19+ 0.39.
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A sum rule is constructed on very general
assumptions which relates experimental quan-
tities and thus can be tested in the laboratory.
Define oP(v) [oA(v)] as the total cross section
for the absorption of a circularly polarized
photon of laboratory energy v by a proton po-
larized with its spin parallel (antiparallel) to
the photon spin. The sum rule then reads

dv 2%A 2

v P A M ' P
—[o (v)-v (v)]=~, ~ '= 205 pb, (1)

where n = 1/137, Mp is the proton mass, and

tcp = 1.79 is the anomalous magnetic moment
of the proton in nucleon magnetons. A similar
rule exists for the neutron magnetic moment
involving the corresponding neutron quantities.
Equation (1) follows immediately from the dis-
persion relation for forward Compton scatter-
ing derived by Gell-Mann, Goldberger, and

f(v) =f,(v')e" e+ vf, (v')~o e'*xe, (2)

where e and e' are the transverse polarization
vectors of the incident and forward-scattered
photon, respectively. The dispersion relation
for the spin-flip amplitude may be written with
the assumption of no subtraction as4

Ref, (v') =+,P
~ [v (v')-o (v')]dv"

A P
@f2 p2 (3)

Since the low-energy theorem ~ informs us

Thirring' and from the low-energy theorem
for Compton scattering proved by Low' and

by Gell-Mann and Goldberger, ' together with
the assumption that the left-hand side of Eq. (1)
converges. %e demonstrate this as follows.

The forward Compton-scattering amplitude
may be written in terms of two scalar invar-
iant functions of the squared energy v2,
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that

(4)

we see that Eq. (1) follows immediately.
The contribution of this Letter is very sim-

ply that of joining the dispersion relation [Eq.
(3)] and the low-energy theorem [Eq. (4)] with
the no-subtraction assumption in constructing
Eq. (1). It is of interest because of its experi-
mental as well as theoretical implications. '

On the experimental side, Milburn' has shown
that it is possible to produce high-energy cir-
cularly polarized photon beams by back-scat-
tering of a laser beam from the electron beam
in a high-energy synchrotron or linear accel-
erator. The laser beam is converted to cir-
cularly polarized light by passage through a
quarter-wave plate and its incident frequency
v is increased to

(2E /mc2)'
[1+4E (h v)/(mc')']

(mc'= 0.51 Me&) for the back-scattered radi-
ation from the electron beam of energy F .
In this way high-energy circularly polarized
photons can be obtained, up to 7.8 GeV at the
Stanford Linear Accelerator Center for inci-
dent ruby-laser light. ' Thus, although the left-
hand side of Eq. (1) presents a formidable ex-
perimental challenge, it is not generally thought

to be insurmountable.
On the theoretical side, the generality of the

input assumptions suggests very strongly that
Eq. (1) should be verified. The no-subtraction
assumption which permits us to "calculate"
the anomalous Pauli moment of the proton by
this sum rule is the only step in the derivation
open to "reasonable" question. Since an anal-
ogous no-subtraction hypothesis underlies many
other recent sum rules based on more restric-
tive assumptions on the algebra of current com-
ponents, we would like direct confirmation of
its validity.

To see how close the low-energy photopro-
duction data come to satisfying Eq. (1), we
have carefully integrated fits to photoproduc-
tion over the threshold and 3, 3 resonance re-
gions and made further estimates of contribu-
tions up to -1 GeV. A simple approximation
of photoproduction by a 3, 3 resonance integrated
from threshold up to 500 MeV already gives
a fairly good approximation to the magnetic
moment, contributing -200 pb. This number

is based on the assumption that the m0P photo-
production cross section is 270 p.b at the peak
of the resonance and is pure (—,,

—', ), and neglects
any nonresonant background. In this approx-
imation vp'= a~' since contributions to the in-
tegrals are all isovector.

In order to make a more detailed estimate
including isoscalar contributions, we have
used the full Gourdin-Salin' model of photopro-
duction which parametrizes the data up to 500
MeV in terms of a 3, 3 isobar along with con-
tributions from single-particle pole terms and
a phenomenological s -wave subtraction con-
stant. %ith this model, the integral yields
180 JLLb. However in spite of the success of
Gourdin and Salin in fitting the total and differ-
ential cross sections of nQ and w+n photopro-
duction, it must be remembered that the rel-
evant quantity here, o p-oA, may be very sen-
sitive to terms which are relatively unimpor-
tant in the unpolarized cross section. Our num-
ber should thus be taken as a good guide but
not as an accurate determination.

The situation is much more muddled if we
attempt to include contributions from the en-
ergy region 500 to -900 MeV. The Gourdin-
Salin7 model uses a phenomenological p-wave
background term as well as a dy3 isobar to fit
the data. From pion-nucleon scattering anal-
yses it is known, however, that in this ener-
gy region the isobar structure is more com-
plicated. On the basis of this simple parame-
trization there is an additional contribution
to the sum rule of -+90 p,b from 500 to 900
MeV, for a total of 270 p.b as shown in Fig. 1.
To this we must add the contribution from mul-
tipion production, with a cross section of the
order of 100 p.b over this energy region. ' It
is unclear at this stage whether this contributes
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FIG. 1. Fit of the Gourdin-Salin model to Otot 2(op
+OA) and to 2(tTp-0A) for single-pion photoprodut"-tion.

909



VOLUME 16, NUMBER 20 PHYSICAL REVIEW LETTERS 16 Mar 1966

to op or OA, but it is possible that near thresh-
old it is mainly P„productions and hence con-
tributes only to OA and thus with a minus sign
to the sum rule. It is not inconsistent with
present data then that the sum rule is well sat-
isfied by energies of the order of 1 GeV, but
the final answer can only be found by experi-
ment.

The above discussion shows, however, that
data in the )1-GeV region will play a crucial
role in the verification or denial of Eq. (1).
Beyond its implications for this sum rule there
is strong interest in measurement of ap and

oA, since individually they are sensitive to
terms that must be known if a complete param-
etrization of the photopion amplitude is to be
achieved.

It is also instructive to compare Eq. (1) with
other recently derived rules based on the com-
mutator algebra of current components pro-
posed by Gell-Mann. " One exact rule" derived
from the electric dipole moment operators
relates the difference of the neutron and pro-
ton moments and the nucleon's isovector charge
radius to an integral over total cross sections
0~2 and 03(2 for the production of I= 2 and I= 2

states, respectively, by isovector photons ab-
sorbed on nucleons. Specifically,

(1+v —~ ) —1
2

2 P n
27T A

—[o„,—2o „,]. (6)
„0 v

Inserting experimental values for the nucleon
moments and isovector electric radii into the
left-hand side of Eq. (6), we find a negative
number, showing that the 3, 3 resonance can-
not dominate the sum rule on the right-hand
side which would then be positive.

Another sum rule has been derived by Fubi-
ni, Segre, and Walecka, '2 who apply the equal-
time commutation rules to quark charges gen-
erating the group U(12). They obtain

�

211 Q K

K -3K K —+ 2RM2 v su

"~dv v v

v p
—(o —o ),

where K~, &s are the isovector and isoscalar

magnetic moments, R is related to the f/d
ratio of the weak interactions and is experi-
mentally of the order of -,', and ap A~ are the
isovector projections of the cross sections
in Eq. (1). In the derivation of Eq. (7) an ex-
trapolation must be made from the mass of
the p meson to zero mass for a real photon.
It is also not clear whether K~ q should rep-
resent total or anomalous Pauli moments.
If the anomalous moment is used, the second
term in Eq. (I) is small since then ~ = 0.06.
Neglecting this term, we can write

2m'0 2 " dv v n

which is similar in form in Eq. (1) and is well
satisfied if one assumes that the 3, 3 resonance
dominates the right-hand side. If the full mo-
ment is used, however, the agreement is not
as good.

It will be of great interest if experiment can
verify directly the validity of Eq. (1) by prov-
ing that the difference op(v)-oA(v) either drops
smoothly to zero or has big contributions of
different signs and compensating magnitudes
before settling down to zero as predicted by
Begge pole analyses.

We thank our colleagues at Stanford for dis-
cussions.
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The probability distributions for ideal systems (ensemble of sinusoids) have previously been derived'

by use of the "Poisson Transform. '" The present Letter describes the case of a harmonic-signal-
plus-noise system which appears to describe more aptly the behavior of a He-Ne laser. In this case,
the laser output is expressed as

E =E, cos(mt+ y) +a(t).

Here y is the random phase of the coherent signal (assumed uniformly distributed over 2)T) and a(t)
is the noise signal (a Gaussian random variable).

The distribution P(n, T) is expressed as

where

P(n, T) = (1/n!) f(o.IT) e P(I)dI,

n = aI(t) T for T «1/b, v = 7
T C

It is readily shown that the envelope, and, hence, the intensity distribution is given by

P(I) =- p — I ),KI),
Eo +I ~F.

20' 2cr' ' 0'

where I, is the modified Bessel function and 0 is the variance of the noise signal. Using the fact
that I=EO'+2@' (for this case), we may now express P(n, T) as

(2)

(ap) exp(-z, /pp ) n (z~ ') )
)

n 2 2

Pn, T =
2 2n! 20

By use of a known integral, followed by further simplifications, the distribution is found to be

P(n, T) = (2.'.T)"

1+2a o.T) k 1+2' nT) k 2v (1+2(x nT))
(4)

where Ln(x) are the Laguerre polynomials. This is equivalent to that derived from quantum-mechan-
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