
VoLUMR 16, NvMszR 20 PHYSICAL REVIEW LETTERS 16 Max 1966

OPTICAL PHONONS IN FINITE CRYSTALS~

Robert Englman and Rafael Ruppin

Soreq Nuclear Research Centre, Israel Atomic Energy Commission, Yavneh, Israel
(Received 19 April 1966)

Because of the long-range nature of the di-
pole-dipole interaction, optical phonons with
wavelengths comparable to the specimen size
become size and shape dependent. The spatial
variation and the frequencies for these phonons
were derived for some special cases. '&' In
this Letter we give a unified treatment cover-
ing a wide class of crystal shapes.

For long wavelengths the short-range con-
tribution to the optical phonon spectrum is flat.
Also, the sum over the dipole-dipole interac-
tions may be replaced by an integral and the
equation of motion for an optical phonon in a
diatomic, rigid ionic lattice is~ (with neglect
of retardation)
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The eigenfunctions fz(r) are phonon ampli-
tudes regarded as functions of the continuous
variable of the position r=r~ ( =o1, 2, 3, ); the
eigenvalues are K = p&(~' —v, ')/Z'e' (in words,
the reduced mass of the ions times the volume
of the unit cell times the squared frequency
counted from a convenient zero, divided by
the square of the ionic charges). The integra-
tion in (1) is over the volume of the body. The
second term in the integrand subtracts off the
self-interaction of the dipoles.

Operating on (1) by div and curl in succession,
and using V Ir —r'I '=-4m'(r-r'), one obtains
(K-8m/3) divf = 0 and (K+ 4m/3) curlf = 0.

Accordingly, either K = 8w/3 and cur lf = 0,
or K= —4w/3 and divf =0, or divf =curlf =0.
The first two possibilities give the usual longi-
tudinal and transverse frequencies in the in-
finite crystal. Only the third alternative yields
frequencies which depend on the size and shape
of the crystal. ' These frequencies are deriv-
able from (1), once a set of orthonormal ei-
genfunctions is found.

Explicit solutions representing surface pho-
nons will now be given for a somewhat restricted
class, namely, those solids whose macroscop-
ic boundary surface may be regarded as the sur-

face or surfaces f, = constant, where the curvi-
linear coordinates $,$2/~ are such that Ir —r'I
can be expanded in the vicinity of the boundary
surface in the form

Ir-r I-'=-4~ „' p(( ', ~ )gW (~, ~ )

a,nd
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For a long circular cylinder of radius p',

and

f (r) = grad[e I (kr)]
m, k m

K + 4w/3 = 4mkp'I '(kp')K (kp').
mk m m

In both these cases the eigenvalues fall in the
lower half of the gap.

(b) The solid is bounded by the two surface
$, = $1 and $, = $&&. Then out of the two solutions

y1& and y2& one can construct two orthogonal

1
2' 3 h($') 1q 1 2 1

Here h; are the scale factors, p is the weight
function, y, and y, are two independent solu-
tions of the "radial" differential equation,
4((,') is the Wronskian evaluated at $, ', and
Ware essentially surface harmonics in the
two quasiangular coordinates $2, $3.

Two cases must now be distinguished:
(a) The solid is bounded externally by a sin-

gle surface $, = $' = constant. Suppose that y,
is the solution regular within the solid. Then
(un-normalized) solutions of (1) are

f (r) =g»d[& ((2, $3)x, (h, )1

and

X2 ($')
2g

($1) go g(~0)

Thus, for a. spherically shaped ionic solid of
arbitrary finite radius'
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functions regular within the extent of the solid:

and

f (r)=gradW ($, $ )y ($ ),
q q 2' 3 1q

(r) = g»d lid' (&2, $3)X2 ($1)l.

Substitution of these in (1) yields a matrix
whose eigenvalues are

K+ 4m/3.

II —1/2
K ——= + —,'+ l (I + 1)—

3 I+ 2 - R (2l+1)

The range of K is now twice what it was be-
fore: between -4m/3 and 8m/3.

For a spherical shell of outer and inner radii
RI, RII two radial functions, rf and x-(I+ 1),
enter with the same spherical harmonic &E~.
The resulting eigenvalues are now'
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The lowest order nontrivial solution, with l =1, is
the one found in Ref. 1.

Regarding the slab as the limiting case of thin spher-
ical shell, this includes the result of Ref. 2.
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In this note we wish to relate a somewhat
trivial, but surprising, soluble extension of
the multidimensional Ising model. Our exten-
sion was motivated by recent experiments on
a real material, dysprosium aluminum garnet
(DyAlG), which closely resembles an ideal three-
dimensional Ising model, ' except for what ap-
peared to be one unfortunate detail: The elec-
tronic (Ising) spins are connected not just to
their electronic neighbors, but also to their
own dysprosium nuclei by a fairly large hyper-
fine interaction. The interacting nuclear iso-
topes are randomly distributed with a natural
abundance of 18.9% for Dy'" (hyperfine coupling
constant A =0.073'K) and 25% for Dy' (A
=0.104'K).' This physical system thus corre-
sponds to a model Ising antiferromagnet dis-

turbed by a magnetic field (the hyperfine-cou-
pled nuclear spins) random in magnitude and

position. The magnitude of the disturbance is
not negligible, considering the low critical tem-
perature of DyA1G (T~ =2.5'K), and is indeed
comparable in magnitude with any one of the
Ising bonds I

Given this substantial random perturbation
of the Ising spins, it is reasonable to expect
a drastic effect on thermodynamic properties,
especially critical-point phenomena. For ex-
ample, an estimate on the basis of molecular
field theory shows each spin in a different spe-
cific environment, and hence a, broadening of
the transition region. The smallest effect on
the thermodynamic properties which one might
reasonably expect is a broadening of the lamb-


