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Following the first observation of two-photon
absorption by two red ruby photons in anthra-
cene single crystals's? a lively debate has de-
veloped about the nature of the transition and
the type of excited state involved. Assuming
that the observed effect was due to a second-
order dipolar transition it was suggested that
(1) an electronic state of even parity® or (2) a
vibronic state of even parity®* existed in the
region of photon energies of twice the ruby-
laser photon energy. Alternatively it was_pro-
posed® that the effect was caused by the (A:A)
interaction term of the Hamiltonian. Proposals
and measurements performed®® to settle these
questions have all concentrated on the behavior
of the absorption of two laser photons.

We would like to report results of a differ-
ent experimental approach to the problem, name-
ly, that of two-photon spectroscopy.’® A Nd
laser source used in combination with a flash-
tube source of variable photon energy allowed
one to investigate the two-photon spectrum from
3.20 to 4.25 eV by directly measuring the ab-
sorption of light of the variable source during
the laser burst. Figure 1 shows the coincidence
of the two-photon absorption signal with the
laser pulse. As shown, a particularly good
signal-to-noise ratio was achieved through a
setup improved over previously used appara-
tus.!! Important changes in the earlier appa-

ratus include the following: (a) An additional
monochromator was placed between the high-
intensity flash tube (variable source) and the
sample to avoid a population of the triplet state
of the anthracene; (b) the intensity of the flash
tube output was greatly enhanced by decreas-
ing the pulse duration from 1 msec to 50 usec,
a delay line being used to assure the proper
timing of the laser pulse with the maximum
output of the flash-tube pulse; (c) the plane

of polarization of the laser source could be
turned by 90° using a crystalline quartz rotor;
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FIG. 1. Coincidence of the laser signal (lower trace)
and the two-photon absorption signal (upper trace).
Absorption gives rise to an upward signal on the oscil-
loscope.
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(d) a Nd laser was used to avoid two-photon
absorption by two laser photons and subsequent
emission of blue light.

Typical results'?»'® are shown in Fig. 2. The
two different vibronic spectra, type I and type II,
were also obtained for a variety of other polar-
ization combinations and crystal orientations
and for crystals from different suppliers. In
all cases type-I spectra were observed only
if the light from the variable source was polar-
ized parallel to the crystal b axis and type-II
spectra only if polarized perpendicular to the
b axis. Different polarization of the laser light
with respect to the crystal axes gave identical
spectra with about the same strength.

For an incident photon flux of N; =5x10%
laser photons/cm? sec, the observed effect
is of the order of 10% transmission change (at
3.85 eV) for a 2.5-cm long crystal. We calcu-
late an absorption constant K=4x10"2 cm™!

Two-Photon Energy in 103 cm”!
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FIG. 2. Two-photon spectrum of anthracene single
crystals. The relative change in transmission AI/I,
of the light from a source of variable photon energy is
plotted versus the combined photon energy of both
sources. For the type-I spectrum the laser light and
the light from the variable source were both polarized
along the crystal » axis. For the type-II spectrum the
laser light was polarized along the crystal a axis; the
light from the variable source was unpolarized in a
plane perpendicular to the crystal b axis.
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and an absorption cross section of 0=10"2%
cm?®. Dividing by the laser flux we get o/N,
=2x107* cm* sec/photon and K/Nj =8x107%
cm sec/photon. These values are in agreement
with those reported by Hall, Jennings, and Mc-
Clintock,'* Hasegawa and Yoshimura,'® and
Weisz et al.,'® if one considers the different
energy position (3.56 eV) and the different size
of the resonant denominator!’»*® for the absorp-
tion of two red ruby photons. Absorption of
two Raman-shifted laser photons was also re-
ported® at 3.18 eV. We did not find two-photon
absorption in the region of 2.3-3.45 eV; the
signal-to-noise ratio in this region is poor,
however.

The steep rise of the effect towards higher
photon energies is interpreted as being due
to a dominant resonance denominator (E gy-hv,)?
which appears in second-order dipolar transi-
tions'!® involving the (p-A) term of the inter-
action Hamiltonian. £y is the energy differ-
ence between an intermediate state 7 and a ground
state G and hv,, is the energy of photons from
the variable light source. This interpretation
is favored by the fact that values of E ;; extrap-
olated from the results fall into the known,
lowest odd-parity absorption bands of A, and
B, symmetry around 25300 cm™" (3.13 eV)
above the ground state.'"?2 Taken together
with the experimental evidence of the dependence
of the effect on the polarization of the variable
light source, these facts suggest that an elec-
tronic intermediate level of A;; symmetry at
25213 cm™! (3.1255 eV) for type-I spectra!®
and an intermediate level of B, symmetry at
25432 cm™! (3.1526 eV) for type-II spectral®
contribute mainly to the observed effect.?® In
order to isolate the vibronic structure we mul-
tiplied the absorption constant K (calculated
from the results of Fig. 2) by a factor F=a(E gy
~hv,)?/hv,, where « is an arbitrary constant.
The resultant vibronic structure, shown in
Fig. 3, can be tentatively assigned to well-known
a, modes'®?2 of 350 cm™!, 1410 cm™!, 1170
cm™!, and combinations thereof.

We suggest then the existence of two differ-
ent final states of even parity located at 3.48
and 3.58 eV, respectively, of mixed Ag and
Bg symmetry. These final states might be even-
parity electronic states in agreement with low-
est two calculated® levels of Byy and A1, sym-
metry® in the molecule, which would both split
into A, and B, sublevels in the crystal. Their
calculated positions®* in the molecule are around
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FIG. 3. The absorption constant K (calculated from
the results of Fig. 2) is here multiplied by F =« (EGI
-h Vv)z/ hv, using values of the electronic transition
energies of the 4, and By levels of Ref. 19 for Egy
(Egr=3.1255 eV for type-I spectra and Egy=3.1526 eV
for type-II spectra).

5 eV, however. On the other hand, the final
states might be vibronic states. Their ener-
gy position arises then from a combination of
odd-parity electronic states and odd-parity
vibrations. The well-known electronic states
at 25300 cm™* (3.13 eV) as well as a state of
Bg, symmetry in the molecule,* calculated
by Pariser,? are candidates.
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FIG. 1. Coincidence of the laser signal (lower trace)
and the two-photon absorption signal (upper trace).
Absorption gives rise to an upward signal on the oscil~
loscope.



