
VOLUME 16, NUMBER 19 PHYSICAL REVIEW LETTERS g MAY 1966

radiation through the inverse bremsstrahlung
processes and ionize the gas by excitational
collisions with the gas atoms as described in
Phelps's work. " By using the concept of the
mutual absorption coefficient for the photon-
electron interaction given by Wheeler and Wildt"
and the elastic and excitational collision cross
section given by Massey and Burhop, " and
assuming the rate of ionization to be limited
by the rate of excitation to the first excited
state, the electron density has been computed
for the conditions shown in Fig. 2. The results
(solid lines, Fig. 2) are in qualitative agree-
ment with the experimental data and show sim-
ilar pressure dependence. The possibility of
production of a small amount of high-energy
electrons by photon ionization which ionize
the gas by impact without the inverse brems-
strahlung process can also be excluded by cross-
section considerations. '

It is therefore concluded that the ionization
process in the argon gas irradiated by a laser
beam is inverse bremsstrahlung and electron
inelastic collisions. The evidence supporting
the electron impact process in high-pressure
gases has recently been published. "

The author wishes to thank G. R. Russell and
Dr. M. M. Saffren for their beneficial discus-
sions.
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California Institute of Technology under Contract No.
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The problem of the ionization of atomic hy-
drogen by electron impact is a fundamental
problem involving the wave function of three
separated charged particles. In addition to
its theoretical interest, the problem is of con-
siderable current importance because recent
observations of the elastic resonances in elec-
tron-hydrogen scattering' are bmited in accu-
racy as a result of the theoretical uncertain-

ty of the true shape of the ionization cross sec-
tion, whose starting point is a key reference
point in determining the experimental energy
scale.

Although there have been numerous approxi-
mate calculations of the ionization cross sec-
tion of atomic hydrogen by electron impact,
it is only comparatively recently that attempts
have been made to put this problem on a more
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rigorous theoretical footing. Peterkop' and
later, but largely independently, Rudge and
Seaton" have derived an asymptotic form of
the wave function. This asymptotic form can.
be used to determine a phase factor which must
be known in order that an independently derived
relation between direct and exchange ioniza-
tion amplitudes2 be useful. In addition, this
asymptotic form is, in the important region
of configuration space, proportional to the com-
plex conjugate of a function 4, a product of
two Coulomb waves whose charges depend on
the vector velocities of the outgoing particles.
This is the underlying basis upon which the
latter" have derived a linear threshold law
for ionization.

The purpose of this note is to point out in-
adequacies in the above asymptotic form, and
to show by means of a simpler model that the
neglect of certain terms which must be made
in deriving it is not justified. The two argu-
ments taken together indicate that the asymp-
totic form is not correct. This in turn has ob-
vious negative implications about the afore-
mentioned phase factor and about the validity
of a linear threshold law. ' Finally, we shall
propose an asymptotic form of the wave func-
tion which is more acceptable, albeit less ex-
plicit, than the above.

We restrict ourselves to the total S-wave
system. The previous analyses'&3 have been
made in terms of hyperspherical coordinates:

(r 2+r 2)1/2

n=—tan '(r, /r, ).
(I)

(2)

8 1 8 1 8 2 4, +——+—, +—W(o, 9~,)+
~p p ~p p ~cv p p sin 2Q

a . a
sin9, 2 +E P(p, n, 8,2) = 0,

12 12 12
(3)

where energies are in rydbergs, lengths in
Bohr radii; g is r,r, times the complete S-wave
function, and

W(~, 9„)
= (sinn) '+ (cos o )

' —(I -sin2o. cos8») '". (4)

The asymptotic form of Refs. 2 and 3 can be
derived from (3) by neglecting all terms which
depend on p '. In this way Eq. (3) becomes
an ordinary differential equation in p whose
solution depends only parametrically on the

In terms of these coordinates, the S-wave Schrod-
inger equation becomes

remaining coordinates Q and 912 In particular,
that solution which represents an outgoing ra-
dial current in this approximation is

f(o.', 9,2) . ~/2 W ln(2E' p)lim g =,'»' exp i E~"p+
C

P ~ QQ

, (5)

where f(o., 8„) is a function whose specification
we need not here consider. If one operates
on this function with the p

' terms that were
neglected in Eq. (3), one finds that the leading
order term is

ggr 4 gg/ ) (]n2/ f
p

p' Bn sin 2o. 89»/ ( E"
This remainder term being also essentially
of order p' ' appears consistent with the neglect
of such terms in the first place.

It should be noted that this consistency argu-
ment is not foolproof, because it is possible
that (a) a solution with asymptotic form of Eq. (5)
satisfying all other required boundary condi-
tions does not exist, (b) there is another solu-
tion for which the terms in question cannot be
neglected. Indeed if (a) is the case, then (b)
follows.

If (5) were the correct asymptotic form, it
would have to be valid for both space-symmet-
ric (singlet) and space-antisymmetric (triplet)
solutions. We shall consider the singlet case
in this paragraph. The phase in (5) depends
on W. But from (4), W is proportional to the
total potential energy and therefore has singu-
larities where the potential has singularities;
one of these is at r» =0, which can occur for
large values of r, and r, where Eq. (5) is sup-
posed to be valid. Nor can anything in f(o, 8»)
cancel this singularity since the 8' term is mul-
tiplied by a function of p. However, a correct
quantum mechanical solution has a cusp where
the potentials are singular. ' Secondly, the quan-
tity by which this function differs from being
an exact solution, the expression (6), is (for
a given p) even more infinite than the potential
itself at r, =r, . Rudge and Seaton'~ have not
mentioned these difficulties. Peterkop' has
stated that this singularity recedes to infinity
by which we presume he means that since (5)
represents an asymptotic expansion, the region
where the asymptotic form becomes valid de-
mands that p be indefinitely large as r, -r, .
This argument is circular: There is a correct
asymptotic form of the wave function including
the region r, = r, ; the problem is, given the
Schrodinger equation as a partial differential
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equation, to find that solution. When one has
found that solution, one can inquire as to wheth-
er it is close to another (approximate) solution
of (3) which does not obey that boundary con-
dition. In fact the form of (5) is reminiscent
of a WEB type of approximation, and the diverg-
ing phase along singularities of the potential
is a characteristic defect of that approximation.
The crucial question of whether a WEB descrip-
tion is valid depends on the energies and mass-
es of the particles involved. We shall talk of
the energy dependence below, but it is clear
that the approximation is much more compel-
ling for, say, proton-hydrogen ionization than
for e-H ionization.

We shall next show by considering a simpli-
fied model that there almost certainly are solu-
tions of (3) for which one cannot neglect p
terms even in the asymptotic region. The mod-
el consists of replacing W in Eq. (3) by its spher-
ical average W, = —,

' jWsin0»d0»'.

Wo = I/sinn,

= 1/cosn, (4a)

It is clear that going through the same argu-
ments which led to ge would in this case lead
to a solution with asymptotic form

lim (
C

P ~ QO

=f0(o)p '"exp(i[E'"p+E '"W, ln(2E'"p)]]. (5a)

Here the diverging phase along r, =r, is trans-
formed into a cusp (discontinuity of slope) along

r, =r„but in essence inadequacy remains. '
Here, however, we can write down exact solu-
tions neglecting no terms in the R'0 equation.
An example of such a solution is (cosn) sinn)

making this term nonvanishing even in the as-
ymptotic region. (Thus this term, in spite of
being formally of the order p 2, is in fact more
important than the Coulombic potential term. )

Considering the totality of solutions (all qi,
q2 for a given E), one cannot say beforehand
whether the sum [cf. the expression (14)] yields
a function for which one can neglect the 8 /Bn
term. In the case of short-range forces the
elementary ionization (S-wave) solutions are'

2kxxx . 2kxp cos
e ' ' sink, r, =e ' sin(k, p sinn), (10)

(8'/8r, '+ &'/sr, '+2/r, +E)C, ' '(r, r, ) =0,

J'g & 'Y2, (12)

it can be seen to be the zeroth-order problem
of the nonadiabatic theory of electron-hydro-
gen scattering. ' For energies below the ion-
ization threshold (E (0), the exact solution can
be written in terms of exact separable solutions:

for which one can also not neglect the 8'/Bo, '
term. Nevertheless, when one sums the tota, l-
ity of such solutions, one arrives at a function'

lim q =f (n, 8 )p
'"exp(iE'"p),

p ~ OO

for which one ean neglect the p 282/Bn2 deriv-
ative. In the case of the Coulomb forces, how-

ever, the inadequacy of (5) and (5a) along r,
=r, (r, =r, ) shows that the composite solution
will not allow this second derivative to be ne-
glected. [Notice that (11) does not contain these
difficulties along the line r, = r, . If there is a
short-range singularity between particles 1

and 2, the cusp condition can nicely be incor-
porated in fs.]

When the model Schrodinger equation is writ-
ten in terms of r, and r„

=e ' F (p sinn),0) tqip cosQ

qiq2 q2
(7) 4 =A. 'Rl (r )+ p C exp(ik r )R (r )

(0) sink r,
1s 2

1
n n1 nsn=1

where

+q2 =E
+ f C(~2)e ' 'F (r )d~, (13)

and Fq (x) is the I = 0 regular Coulomb wave

function'.

where

E=k -n =-w '+K2 —2 2 2

n 1 2'
lim F (x) =sin(qx+q 'ln2x+o ).

q 0~ OO

Note that for gq q
"' to be a. solution, one

q'q'-2 2cannot neglect the p '8'/Bo. term in the mod-

el Schrodinger equation. In particular, 82/sn2

brings down p' which cancels the p factor

The point is that the coefficients in (13) are
determined by the condition that the singlet
or triplet boundary condition along r, =r, be
smoothly satisfied. 6 Utilizing the continuity
conditions, and conservation of current, we

have analytically shown in both the singlet and
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triplet cases that for energies near ionization
threshold, C~~n ", which implies that the
threshold ionization dependence is proportion-
al to E'" for the zeroth-order problem. '

Above threshold one must augment (13) with
terms of the form

f, C(q2)e ' 'F (v )dq .
2

(14)

The boundary condition along ~, =0 is automat-
ically satisfied, and the coefficients C(q, ) are
still determined by the boundary condition at
r, = r, . This boundary condition having been
satisfied, the resultant solution will not be sub-
ject to the criticism of (and therefore will be
different from) Eq. (5a). Peterkop" has used
an argument of stationary phase to reduce (14)
to (5a); however, unlike the case of short-range
forces, the resultant expression cannot satis-
fy Kato's theorem. This would seem to indi-
cate that the method of stationary phase needs
further examination in this case.

The individual solutions in (14) describe, in
a, clear way, the quantum mechanics of the phys-
ical situation. The scattered particle moves
as an outgoing (free) spherical wave whereas
the inner particle moves in the Coulomb field
of the nucleus. That this continues to be the
case when one considers the full (W) interac-
tion has not been proven. In fact, the semiclas-
sical argument (which corresponds to the func-
tion C*) contends that the outer particle sees
an x, ' potential coming from the fact it sees
(in the first approximation) a multipole field
of the nucleus and the inner electron, the mo-
ment of which expands as r, itself (due to the
inner and outer particle coming out with a con-
stant ratio of their velocities). We, however,
consider this argument to be questionable, be-
cause quantum mechanically in order to pre-
pare an incident beam of a given energy, one
requires a longer and longer wave train. Thus
the emerging particles are described by spher-
ical waves, and what the outer particle sees
is not an inner particle in a definite orbit but
a smeared out probability amplitude which we
would expect ultimately to screen the outer
electron from the nucleus. This consideration
is particularly relevant near threshold where
the wavelengths of both emergent particles are
large. This is the physical basis upon which
we believe that not only is the asymptotic form
of ge in Zq. (5) not completely correct, which
we have already shown, but not even a very
good approximation in the threshold region.

Finally, these considerations indicate that
one cannot neglect the term p

2 sin '8»B/80»
x(sinH») 8/89» in the full S-wave problem any
more than one can neglect the term p 's'/so, '
in the zeroth-order problem. We can find so-
lutions in the presence of this term providing
we retain 8'0 in place of TV. A typical solution
is rlhf(q]rl)Efq (r2)Pf(cos912), where hf and

are the lth spherical Hankel and Coulomb
Q'2

wave functions, respectively. The most gen-
eral such wave function incorporates the fea-
tures of the previous mathematical and phys-
ical arguments, and thus we believe it repre-
sents the correct asymptotic form of the S-
wave function. '

lim g= P P (cos8 )f C (q )r h
v"Z

r &r -~ l=0

x(q r )E (r )dq .
1 1 lq2 2

(15)

This form is 6)» dependent, of course, but be-
ing a. product of free (spherical) waves and Cou-
lomb waves, it strongly suggests a nonlinear
threshold law for ionization.

I would like to thank Professor J. Sucher for
incisive and invaluable consultations on this
problem. I am indebted to the following col-
leagues: Dr. K. Omidvar, Dr. R. Drachman,
and Dr. I. Cheshire, for valuable discussions.
I am also indebted to many visitors to this di-
vision for patiently listening to our ideas on
this subject and for their own comments. Fi-
nally, I would like to thank Dr. J. W. McGowan
and M. A. Fineman for very valuable conver-
sations on the experimental aspects of the prob-
lem. Although their initial results were obtained
before this work was undertaken, it is signifi-
cant that they do reveal a nonlinearity of the
threshold ionization behavior. "
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Recently Chen et al. ' have observed well-de-
fined inelastic peaks in the energy distribution
of slow neutrons scattered by liquid argon.
These inelastic peaks were not resolved by
earlier experiments. '~' In this note we present
independent evidence that the observed inelas-
tic peaks are a real manifestation of collective
motion in liquid argon.

Rahman4 has carried out a classical molec-
ular-dynamics calculation of the Van Hove cor-
relation functions Gs (r, t) and Gd(r, t) for liq-
uid argon. %e have used his results to com-
pute the expected inelastic neutron scattering
under the conditions of Ref. 1 and find a struc-
ture in the energy distribution of scattered neu-
trons similar to that reported by Chen et al.

We need the double Fourier transforms Ss(t&,

(u) and Sd(K, (u) of the Van Hove correlation
functions. This is not feasible on a complete-
ly numerical basis from Rahman's results,

but Rahman has already given us enough infor-
mation to carry out the spatial transform ana-
lytically. He has found that his data are well
fitted by a delayed convolution approximation.
For the intermediate scattering function [trans-
form of G(r, t) with respect to r] this implies

F (~, t) = [S(v)-1]F (~, t'),

where S(w) is the usual structure factor. The
time t' is given by Rahman as

t' = t-~[I-exp(-t/&)-(t'/~') exp(-t'/&')] (2)

with v= 1.0& 10 "sec. It should be emphasized
that this is a fit to the computed correlation
functions, and not an approximate theoretical
construct. The physical origin of this approx-
imation is not well understood. Furthe'rmore,

Fs (&, t) is almost a Gaussian function of & and

can be written in terms of the spatial moments
of Gs(r, t) in the form
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