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The multiplet structure of hadrons must be
related to the structure of their interactions.
For multiplet structures associated with an
invariance group, the interactions are to be
invariant under the group; but for supermulti-
plet structure related to a noninvariance group
the interaction structure has to be specified
somewhat differently. We have shown elsewhere'
how vertex functions may be associated with
certain noninvariant generators, and shown
that this leads to a variety of valid and useful
predictions. We get, for example, the electro-
magnetic mass difference relation M(n)-M(p)
=(5/11)(M(Z )-M(Z+)j which is in good agree-
ment with experiment. In this Letter we con-
sider the structure of scattering amplitudes
within the noninvariance-group framework and
deduce several relations between different am-
plitudes which include the Johnson-Trieman'
relations and the Olsson' relation but extend
their domain of validity. We establish the con-
nection between this framework and the groups
of strong- and intermediate-coupling meson
theories. 4 We note that the results we obtain
are independent of the specific representation
to which the baryons are assigned.

The characteristic noninvariance' group G

of a system contains the invariance group K
as a subgroup and is such that all states of the
dynamical system constitute a single irreduc-
ible representation. We shall confine our at-
tention to systems with baryon number unity
and with K chosen to be SU(3) Cm SU~(2) (unitary
symmetric pseudoscalar theory); the dynami-
cal postulate is the identification of the meson
coupling matrices A~ to be the generators of
G that are not conserved. The commutator of
two such nonconserved generators is then a
generator of the invariance group K.

Let us now consider two meson-baryon scat-
tering processes related by crossing and denote
the corresponding scattering amplitudes by

T(B+M -B'+M ) =(B'I T(n) l3) IB),a

T(B+M —B'+M ) =(B'
I T(P, n) IB),

where the amplitude matrices T(n, P) and T(P, o.)
are considered as matrices in the baryon iso-

bar space. With respect to the invariance group
K, the difference of these amplitudes is an anti-
symmetric second-rank tensor. With respect
to the noninvariance group G we now identify
this antisymmetric form with (a multiple of)
the antisymmetric Lie product; this makes
T(o., P) T(P, o—.) proportional to a, suitable com-
bination of generators of the invariance group
K. We come back to this result within the con-
text of intermediate-coupling meson theories
towards the latter part of this Letter.

Application to "elastic" scattering. —Consid-
er the case where both B and B' are members
of the —,

'+ baryon octet. In this case the differ-
ence between the scattering amplitudes can be
related to the matrix element of a linear com-
bination of generators of the invariance group.
A standard application of the Wigner-Eckart
theorem enables us to express all the ampli-
tude differences in terms of any one difference.
Let us write the baryon-meson scattering am-
plitude in terms of the elastic (spin-nonf lip)
and spin-flip amplitudes in the form

T=f+o ng,

and define the quantity

x(B~M~, B~2)
=f(B~+M, —B2+M2)-f(B, +M2-B, +M~).

For example,

x(pm+, pm+) =f(p+ v+ -p+ v+)-f (p+ w -p+ v ).
We then obtain the relations

x(nK', nK+)

=x(p~', Z'K') = Wax(n~', Z'K')

= -&2x(pw, ZOK ) = -x(nw+, nm+) =x(pZ, nK')

= -(1/&2)x(pm, nv') =x(pm+, pe+)

=-,'x(pK', pK') = -(;)'"x(p~-,~),
and

x(pK ~K+) =x(pv, Z K+) =x(gP', = K+) = 0.

This list of predictions includes the Johnson-
Trieman' relations, but extends their validity
to the entire spin-nonf lip amplitude with no
restriction to the forward amplitude. (Of course,
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in the forward direction the spin-flip amplitude
identically vanishes. )

For the spin-flip amplitude the predictions
are simpler', if we define

Y(B,Mi, B~,)
=g(Mi+B7 -M2+B2) g(M-2+Bi -M|+B2),

then Y=O unless By:B2 for example,

Y(p77+, nrr ) = Y(p77, Z K ) = Y(pK':"OK+) =0

and a host of other such relations.
It is to be pointed out that the discussion of

the equalities discussed here depend only on
the properties of the SU(3) Ie SU~(2) group.
Therefore our results are valid as long as the
baryons are assigned to any representation (20,
56, 70 or 700, ~ ~ ~ ) of the noninvariance group
SU(6) or of SL(6, R) which contains the —,

' octet.
Baryon resonance production reactions. —We

can carry out a similar analysis for those pro-
cesses in which the final baryon B' is a mem-
ber of the &+ decimet. The relations in this
case are particularly simple since the ampli-
tude matrix T(r77, p)-T(p, r77), being a linear com-
bination of the generators of K, cannot connect
the baryon —,

'+ octet with the baryon resonance
decimet. Consequently, the amplitudes for

processes related by crossing (at the same
positive energy!) are equal:

T(B+M -B'+M ) = T(B+M -B'+M ).
P

Consider in particular the following relations:

T(~++p -w++N*+) = T(v-+p - v-+N*+),

T(7r++p-77'+N*++) = T(7r +p-7r +N*++)

These relations can be re-expressed as a re-
lation between the amplitudes A, and A~ for
the I=-,' and I=-,' states; both the above results
are equivalent to the Olsson relation'

A, =10'/ A .
This relation (the sign on the right-hand side
depends upon the convention used in the coupling
of the two isospins) was originally derived from
SUlir(6); the present derivation extends its va, -
lidity and predicts that the amplitude relations
should hold with no constraint on the momenta.
Olsson has shown that it is in excellent agree-
ment with experiment as analyzed by Olsson
and Yodh. '

Similarly we have for the kaon-initiated. re-

actions

T(K +p -Ko+ =~) = T(K'+p -K++ =~)

which could be expressed in terms of the iso-
spin amplitudes A2I in the form

Ao =3A2

(with the same remark about the sign conven-
tion as before). No meaningful comparison
with experiment seems possible at the present
time.

We may also deduce a variety of other equal-
ities from

T(7r++p-K++ Y*+)= T(K +p-7r + Y*+),

T(rr +P -K++ Y*) = T(K +P -rr++ Y~ ),

T(K++p K-+N~+) =T(K +p-K +N*+),

and so on. A more detailed analysis and com-
parison with experiment will be presented else-
where.

Relation to strong-coupling theory. —It now
remains to connect up our hypothesis [that the
amplitude matrix T(a, P)-T(P, a) is proportion-
al to a linear combination of suitable genera-
tors of the invariance group K] with strong-
coupling meson theory. Goebel has demonstrated
the use of dispersion techniques in strong-cou-
pling theory', Cook, Goebel, and Sakita' (CGS)
have applied such techniques to study the under-
lying group structure of such a theory. Follow-
ing CGS we observe that the driving terms for
the meson-baryon scattering amplitudes (the
renormalized "Born approximation") are given
by

(w) =—[~,X ]+—,[[~,X ],X ]+Oi —i,
(i&

On ~ ar' 0 &u' ' a '
P (g') '

where the amplitude is considered as a matrix
in the baryon space. The meson coupling ma-
trices Az are chosen to be finite in the strong-
coupling limit (g-~) and for this reason we
have extracted and displayed the factors of g.
We now appeal to strong-coupling theory to
guarantee an expansion of the coupling matrices
and the isobar masses in inverse powers of
the coupling strength g, and 6 is the coefficient
of g ' in the expansion of the mass matrix.
(The expansion is in powers of g ' rather than

g ' since in a theory with pure Yukawa coupling
the sign of the coupling can be changed at will
by an obvious canonical transformation. ) We
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may therefore write

&&+—A 't&y ~ ~ ~
1) 1 1

|&. g'j n g' n g4 n

This enables us to re-express the driving term
tp~(&u) in the form

[A (0& A (0&]i {[A (0& A u&] y [A (&& A (0&])g 1

oo& n ' 8 oo& n ' 8 n ' 8

Unitarity of the full scattering amplitude in the
strong-coupling limit requires the boundedness
of the driving term tp~(o&), which implies

[A @' A "']=0
n

The remaining two terms are, respectively,
odd and even under crossing. This enables us
to conclude that the driving term for the ampli-
tude difference tp~(o&)-t~p(u&) is (g /&u) [A~, Ag].
Invoking the structure of the I ie algebra of
the noninvariance group G it is now clear that
the driving term is a linear combination of the
generators of K. Since the dynamics is invar-
iant under K, the complete amplitude difference
T(a, P)-T(P, n) will have the property of being
a suitable (energy-dependent) multiple of a lin-
ear combination of generators of K. This es-
tablishes our hypothesis.

CGS argue that the finiteness of the amplitude
in the strong-coupling limit requires that the
meson coupling matrices A~ commute; we find
instead that they are of order g ' and are pro-
portional to a generator of K. If we follow CGS
and equate these terms to zero, all the ampli-

tude differences (which we denote by x and y)
would vanish; this is completely at variance
with experiment.

It should be pointed out that the predictions
of the theory outlined here apply to intermedi-
ate- and strong-coupling theories equally well;
in the intermediate-coupling case of SU(6) or
SU(4) they hold for all choices of the baryon
representation. For example, the Olsson re-
lation is true for the choices of 20-, 56-, or
120-dimensional representations of SU(4) or
the infinite-dimensional representations of
SL(4, P). The Johnson- Trieman relations and
their generalizations hold with the choice of
the standard 56-dimensional representation
of SU(6) or the Sakita choice of 20 (or of the
"t0 or 700) representation; and even with bary-
ons assigned to the representations of SL(6, R) ~
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