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of its d, l, and dl isomers. Solutions were
prepared at a standard concentration of 1 part
arabinose to 2 parts water, molarity M = 2.46,
and had refractive indices 1.3736, 1.3935, and
1.4347 (+0.001) at 6943, 3472, and 2314 A, re-
spectively. The specific optical rotatory power
at 2314 A was -9.7x10' and+9. 8x10 deg dm

(g cm ')—' for the d and / isomers in 0.1M so-
lution. To ensure an equilibrium distribution
of the aldehydic, pyranose, and furanose iso-
mers of arabinose introduced by mutarotation, "
all measurements were made at least three
hours after preparation of the solutions.

Figure 2 shows the measured angular distri-
0

bution of 2314-A emission from the d- and E-

arabinose solutions, and from a quartz refer-
ence crystal cut as a 7'45' prism replacing
the solutions. Emission from the dl solution
was unobservable and was &5% of the d and /

emission. The observed radiation occurs in
two peaks of roughly equal intensity separated
by b, g = 50'. For both quartz and arabinose the
peak positions agree to within experimental
error with the calculated angles for emission
from the forced (B) and free (F) waves' ' as-
sociated with the 2314-A polarization. The cal-
culations made use of the nonlinear boundary
theory of Bloembergen and Pershan' and Klein-
man, ' on the basis that k[P(&u, +&a,)]=k(&e,)
+ k(m, ). The average ratio of the peak inten-
sities from the arabinose solutions and from
quartz was measured to be (4.6a 2.0) x10

The entrance face of the quartz prism was
a (011) surface with the x axis in the plane of
Fig. 1. For this geometry double refraction
leads to four separate 2314-A polarization com-
ponents; the resulting bound-wave radiation
is a quadruplet (d, 8 = 3') and the free-wave ra-
diation a doublet (de =3'). The arrows in Fig. 2

show the average position of these unresolved
multiplet components. On the basis of incoher-
ent addition of the four 2314-A polarization
components, detailed calculation shows the
transverse polarization component PT in quartz
to be given by
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FIG. 2. Angular distribution of 2314-A sum-fre-
quency radiation from aqueous arabinose solutions
and from a quartz reference crystal. The units of
I are arbitrary but are the same for the four figures.
Peak signal for d- and l-arabinose represents about
5 photoelectrons. The angle is measured from the

0
direction of the 3472-A incident beam, undeviated
by the sample prism. On this scale, the undeviated
6943-A beam is observed at 49 02'. The arrows
show expected positions of radiation from the forced
wave (B) and the free wave (E), which are separated
as a result of the prismatic sample geometry (Ref. 8).
Data collected on different days, identified by open and
closed circles, have been shifted by the same amount
(less than 11 min of arc) to locate the observed peak
positions at the average peak position, correcting for
day-to-day fluctuations in alignment. The discrepancy
of the peak positions from the expected values is with-
in the experimental error introduced by the alignment
fluctuations.

P '(aI + &a ) = 1.12d ~E'(&ul)E'(&u ),

where E (&u, ) and E(o!,) are the field amplitudes
at 6943 and 3472 A, and dy]y is a measured"
second-order polarization coefficient. The
constant d», is assumed negligible. " Coher-
ent addition of the four polarization components
with arbitrary phase leads to numerical con-

(2)

stants between 0.73 and 1.59 in Eq. (2). The
coherence length /c for the quartz experiment
is definede by /c = A0/(n-n'), where XD = 2.34
x10 ' cm and n and n' are refractive indices
corresponding to the velocities of the free wave
and polarization wave, respectively. From
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published refractive index data, lc = (2.16+ 0.12)
x10-4 cm.

The transverse polarization I'T for the ara-
binose solution is calculated from Eq. (1) to
be

I' '(~ +&a )=0.160lI'E'((u )z'(~ ).
T (3)

The coherence length is l& = 2.28 x10 4 cm.
From the above data, and the approximation
that the peak intensity is proportional to PT'l~',
it follows that y/d», = 0.1 t s 0.01. Taking d»,
=1.15&10 9 esu, "~'~ one obtains y (arabinose,
2.46M = 1.8 x 10 esu.

Preliminary data show that (1) y increases
with concentration according to M", where n
=1.3+0.6, (2) the dependence of sum-frequen-
cy intensity on the polarization of E(&u, ) and

E(&u, ) is consistent with Ref. 1, (3) y values for
concentrated solutions of glucose and sucrose
are comparable with arabinose, and (4) the
sum-frequency angular distribution in nicotine,
which absorbs strongly at 2310 A, shows only
one peak (B), as expected.

Three estimates of y were made as follows:
(1) From the measured optical rotatory power

p, where both p" and y" are accounted for
in terms of a single-electron anisotropic os-
cillator model with anharmonic potential A~&z,
y- 6x 10 ", in satisfactory agreement with
experiment. (2) From y, on the basis of a
coupled oscillator model for y,"without an
explicit cubic anhar monicity, "

g
—3 x 10

(3) On the basis that a crystal ot completely
aligned anharmonic arabinose oscillators has

23gy32 lc 2/3* ~ -d„, (quartz)'and that a
factor of 10 ' estimated from the single-elec-
tron theory" takes into account random orien-
tation, y-4. 59x10

The large observed value of y leads us to
conclude that the single-oscillator model plays
an important role in the optical activity of arab-
inose. For large conjugated molecules such
as hexahelicene, however, in which high opti-
cal activity arises from a large distributed
magnetic moment, rather than from orbitals
localized at specific asymmetric carbon atoms,
y is expected to be proportionately much small-
er. It is interesting that for the simplest case
of the coupled-oscillator model, "consisting
of coupled x and y oscillators separated by

4z, g vanishes" since ILL,z~ ——0. A more com-
plete account of the theory will be published
elsewhere.
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