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In 1951 Ward and Wilks' suggested the pos-
sibility of propagating second sound (temper-
ature waves) in dielectric solids. Since that
time this suggestion has received considerable
theoretical attention, although in the only
published experiment in search of second sound
in solids it was not observed. ' The stringent
conditions on the existence of second sound,
the "frequency window, "3 severely limit the
materials in which the phenomena might be
expected to exist. ' We have undertaken tem-
perature-pulse experiments in samples of sol-
id He~, a material which we believe fulfills
the "frequency window" requirements. The
purpose of this Letter is to report the prelim-
inary results of these experiments: (1) At low
temperatures there is evidence for the propa-
gation of temperature waves, i.e., second sound;
(2) temperature-pulse experiments should pro-
vide a useful alternative to steady-state ther-
mal conductivity as a tool for studying phonon
systems.

The helium crystals are grown at constant
pressure, a in a volume 9 mm (diameter) &&8 mm,
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by lowering the temperature at the bottom of
the sample in a manner consistent with the re-
quirements of a growth-rate calculation while
the top of the sample is maintained slightly
above the melting temperature. Figure 1 illus-
trates the sample chamber.

The temperature-pulse generator (19-Q/
I.R.C. carbon resistor board) is at the top of
the sample. The detector at the bottom of the
sample is of the same material. Input pulses
were 0.1-5.0 p.sec in duration with voltages
adjusted to produce a maximum temperature
increase of the detector of (0.02'K.

13 He' crystals have been grown at 19.5 cm'/
mole at a pressure of 54.2 atm in this appara-
tus. Four of the 13 samples appeared to be
single crystals and showed direct evidence for
the existence of propagating temperature waves.
The results for one of these four "good" crys-
ta.ls are shown in Figs. 2 and 3. In Figs. 2(a)
and 2(c), the temperature of the detector is
shown as a function of time for pulses at 0.71
and 0.54'K, respectively. In (b) and (d) of this
figure the time derivative of the detector tem-
perature is plotted as a function of time for
the detected pulses 2(a) and 2(c). Figure 3
shows the arrival time of the pulses as a func-
tion of temperature.

The results displayed in Figs. 2 and 3 can
be understood by an examination of the phonon-
scattering processes operative in the sample
over the temperature range of the experiment.
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FIG. 1. Sample chamber.

FIG. 2. (a) and (c) Oscilloscope traces showing the
detector temperature excursion as a function of time.
(b) and (d) Plots of the rate of change of the detector
temperature as a function of time computed from
curves (a) and (c); the time axis is in psec. The ver-
tical spike in (a) and (c) marks t =0.
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FIG. 3. The arrival time of the received pulse as a function of reciprocal temperature. These arrival times
are taken to be the time of maximum d(6T)/dt of the received pulse [e.g. , from Figs. 2(b) and 2(d)]. A plot of
the d(BT)/dt curves of some of the received pulses are superimposed.

At temperatures above 0.7'K the umklapp-pro-
cess mean free path is much less than a typi-
cal sample dimension, and the temperature
pulse propagates as a superposition of diffu-
sion modes. The arrival time of such a tern-
perature pulse at the detector is expected to
be on the order of

)2 f2f= (y) u c'~ '
M Q

where l =0.8 cm is the crystal length, cg is
the transverse sound velocity, v.~ is the um-
klapp relaxation time, and ~& =ct7&. Choosing
(a) cf using the Debye model and the specific-
heat data of Edwards and Pandorf'c and (b) ~„
from the thermal conductivity experiment of
Bertrnan et al. ,"we find t as a function of tem-
perature as shown by a dashed line in Fig. 3.
The experimental arrival times are in agree-
ment with the predictions of Eq. (l) at high
temperatures. In fact, all 13 sa,mples exhibit-
ed similar high-temperature behavior regard-
less of their low-temperature behavior.

For T & 0.7'K, X~ » R (the sample radius)
and umklapp scattering becomes unimportant.
Below 0.7'K we would expect the arrival time
of the temperature pulses to be temperature
independent and determined by the geometric
characteristics of the sample. " For a single

crystal the arrival time at low temperatures
would be f = l/c, where the velocity c is (a) vl
=ct if the normal processes are relatively
slow (no second sound) or (b) vlf =cf/u 3 if the
normal processes are relatively rapid (second
sound) (see Refs. 3 and 9). In the four "good"
crystals (at low temperature) the leading edge
of the temperature pulses arrived at a delay
time of about 50 ILI.sec. Further, in each of
these crystals a second pulse (a first echo)
appears at a delay time of about 150 p, sec.
Ne believe that in these samples the temper-
ature pulses are traversing the sample cham-
ber as second sound waves since (a) the exis-
tence of an echo is characteristic of wave prop-
agation and (b) the velocity of propagation is
in good agreement with the value expectect for
second sound. The second sound velocity is
given by'3

1 c +2c
l

II 3 c 5+2c
l t

where cl and cg are the longitudinal and trans-
verse phonon velocities, respectively. Because
of the large anisotropy in helium crystals and
the fact that the orientation of the crystal is
not known in any measurements made so far,
an exact evaluation of Eq. (2) for vlf is not pos-
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sible. Measured values of c~ for molar volume
19.4 cms/mole obtained by Vignos and Fair-
bank'~ fall between about 585 and 630 m/sec.
Lipshultz and Lee" find values for c~ between
230 and 310 m/sec at a molar volume of 20.9
cms/mole. If we assume the transverse veloc-
ity to be proportional to the Debye temperature
values obtained from specific-heat measure-
ments, m the value of ct at 19.5 cm /mole would
fall between 270 and 360 m/sec. Inserting these
velocity values in Eq. (2) gives values of vII
between 160 and 220 m/sec. " Experimental-
ly we find vII =0.8 cm/50 psec =160 m/sec,
in satisfactory agreement with the prediction
of Eq. (2).

The structure of the arriving temperature
pulse at lowest temperatures is not entirely
understood. Certainly part of its explanation
lies with the geometry of the sample chamber
and the response time of the generator and
detector. Nonetheless, we believe the essen-
tial features of the low-temperature pulses
—the very low velocity and attending reflection
—satisfactorily fit the picture of second sound.
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