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in which quarks have third-integral electric charges.
The results obtained in this paper can be extended to
many of the models with several triplets, possibly with
integral charges. Let the members of any triplet in
such a model be denoted by p~, n, , A~, where p, n and
X denote the SU(3) quantum numbers and the index i
labels the particular triplet. Then if the quark struc-
ture of mesons and baryons is such that Eq. (1) is mod-
ified only by putting indices on all the quark labels apd
adding summations in some places, the results pre-
sented here should be valid provided that appropriate
assumptions are made regarding SU(3) symmetry.
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In this note we apply the method of Fubini
and Furlan' to the equal-time canonical com-
mutation relations of the renormalized fields
for, say, pions and kaons. This method was
recently used by Adler' and Weisberger' to
obtain their celebrated sum rule for the axial-
vector coupling-constant renormalization.
Our main result here is Z3(K)/Z3(m) = rnK'/

Namely, the ratio of the wave-function
renormalization constants of the kaon and the
pion is equal to the fourth power of the ratio
of the physical masses. Our arguments are
by necessity heuristic; however, we shall not
fail. in showing at every stage explicitly what
our assumptions are.

We start by writing down the canonical com-

mutation relations for the renormalized pion
and kaon fields, m~(x, t) and K+(x, t),

[i+(x, t), m (y, t)]= [—i/Z, (w)]6 (x—y),

[K+(x, t), K (y, t)]= [—i/Z3(K)]6(x-y).

The relations (1) are formal in character since,
as everyone knows, it is quite likely that both
Z, (m) and Z3(K) are zero. Here we shall explic-
itly make the following two assumptions;

(A) We first assume that the ratio Z, (K)/
Z, (m) is finite, even though both Z's might be
zero. (In the latter case we are assuming the
existence of some limiting process which gives
a finite value for the ratio. )

(B) Secondly, we assume that' the relations
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(I) make enough sense to enable us to take their matrix elements between single-particle states, di-
vide, and get

fd'x Jdsy(b(q) I [7)+(x, t), 7[ (y, t)] lb(q')) Z, (K)

fd'x fd'y(b(q) I [A+(x, t), K (y, t)] lb(q')) Z, (m)

where Ib(q)) is a single-particle state with four-momentum q. For-simplicity we shall initially take
"b" to be a pseudoscalar particle. In writing (2), we have cancelled out on the right-hand side the
ratio of two volumes coming from one of the space integrations; i.e. , we have cancelled out (2m) b(0)
from numerator and denominator. 4

One can now apply the methods of Adler and Weisberger to the integrals on the left-hand side of
(2). If one does this formally, one obtains the ratio of two divergent sum rules. To give any mean-
ing to such a ratio, one has to introduce a cutoff and interchange the order of the division with the
limit. There are several ways in which one can introduce such a cutoff. We choose the following
one: We formally rewrite the equal-time commutator as a limit of nonequal-time commutators,

[v(x, t), w(y, t)] =
'+QQ ~ +QO

dt'5(t'-t)[i(x, t'), m(y, t)]= dt'—exp[-(Y'(t'-t)2][w'(x, t'), v(y, t)].

We then rewrite (2) as

d'x d'y dt 'A, exp — ', (b(q) l[~+(x, t'), v (y, t)]lb(q')) Z, (&)
1 0

d'x d'y dt'A, exp ——', (b(q) I[Ad (x, t'), K (y, t)] lb(q')) Z, ()T)
2 0

where for later convenience we have set n =A/q, . The quantity A has now dimensions of a mass
squar ed. We write

where ~ is now a dimensionless parameter and M„b' and M~b' are unknown masses which set the
scale for the limiting process in the numerator and denominator.

Finally, we make our third assumption: (C) We assume that in (4) we can interchange the order
of the division and the limit process. Using this assumption and (5) we write

( X2M 4(t'-t)2'[
m z (tq) -q bx I fd xfd pfdl exp) —— '—

))~ (b(q) l[d~(x, t )x(yt))lb(q'))'-, ,
3 lim 0 m mb

Q~QG ( d(. 2M 4(t' -t)2
ee 'Z (x) q *ee 'I *fd'x d*p t d(-e—xp,'( ( )pl [q(qx[, b ), lq (y)l I b( b))q', ,

Kb
K 3 Q K Kb QD

+

where again for later convenience we have multiplied the numerators by m~ qo' and denominators

by m@'q0'. We insert a complete set of states in both the numerator and denominator, and follow

closely the notation of Ref. 2, obtaining

rn 'Z (K)

m 4Z (m)

lim

-~ 4 dw .e w-M. exp — —,— q -q. q
' lz. ~ I'+le.+~ I'

m ~b - j0 0j
int

(qo-q o)qo
m dW) 5(W-M. )exp ———,—

(q -q. )q 3[IF. (K)12+ IF.+(K)l']--@ W+m - j
b K Kb — j0 0
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where

tt'M ~~~ PS )"
&jlw+(0) Ib(q))=~ LI I I F. (w), (jlK+(0)lb(q))=( — F."(K),

q 0 j

q.o= (q o+M.2-M 2)'~'

The sum Qj also goes over all the internal variables of the system j and Mj denotes the invari-.int

ant mass of the system j.
For finite & the expressions on the right-hand side of (7) are convergent for any q, . We can now

take the limit q, — in both the numerator and denominator and obtain

m 4Z (K)
7r 3

m 4Z (w)

-
t
W2-M ')'

dW exp —. . . W(W'-M ')2[o '+ (W)+o '(W)]
M +m

7r

tW'-M
(gg7 exp g7 @72 ~ 2 2 0 0 QT +0. 0 gj

(10)

where a„b' is the off-mass-shell total cross section for mb scattering with the mass of the external
pions set equal to zero. We might remark here that the factors m~' and mg' are absorbed on the
right since they are needed to relate the I 's to the total cross sections. For details see Ref. 2.

Using the Pomeranchuk theorems &( )-constant, and vw+b( ) =ow —b(™),we obtain from (10)

m Z (K) /M )' cr '(~)
3 wb

~

wb

m 'Z (w) II, M / o '(~)

However, instead of starting with (2), we could have considered the ratio

Jd'x fd'y(b(q) I[w+(x, t), w (y, t)]lb(q')) —1
fd'xf dy( (cq)I[w (x, t), w (y, t)]Ic(q'))

(M )'o '( )
wb

i

wb

() ' (13)

Then following similar steps as before we would

obtain off-mass-shell corrections are small for both
the K and m. This will give us, as S'-

o (W) = o '(W) = o' '(W).

We now let b in (11) and (13) be a. pion and c
be a kaon, and take the ratio of (11) to (13) to

get

m Z (K) t'M )'o '( )
w 3

i

wK
i

wK

m 4Z (w) I,MK j ~

We recall that when we write o~b, the first
particle in the subscript has external four-mo-
mentum whose square is zero. Similarly, M,~g
is the scale for the cutoff for the process with

the external pions off the mass shell, and M~~
with external kaon off the mass shell. It is
reasonable to assume that at high energies the

It will also imply that Mz~ —= M~+. Thus our
final result is obtained:

Z (K) m
3

Z (w)
m''

We conclude by making a few remarks about
the result we have obtained. First of all it is
clear that with the present status of our know-

ledge of field theory, we have no enlightening
remarks to make about the validity of assump-
tions (A), (B), and (C). We just accept them
for the moment. Secondly, the cutoff proce-
dure we have used is not the only one available.
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Z (A) m
2

Z (n) m'
n

(17)

The reason for the different powers in (16)
and (17) comes from the fact that in going from

We could, for example, have cut off the sum
over states at a mass M&

—-~M~b in the numer-
ator and M& ——~M~b in the denominator and not
used the Gaussian cutoff. This would have led
to truncated integrals in (10) and to the same
final result as ~ — . We have certainly not
proved that all cutoff procedures give the same
answer. However, if the Z's are nonzero it
is hard to see how a different result could be
made to match with the ratios considered in
this paper. For the case in which both Z's
are zero, one could look at above arguments
as giving at least two limiting processes which
define the ratio Z, (K)/Z, (w).

Other than (A); (B), and (C), and assuming
the uniform form (5) for the cutoffs, our only
assumption left is the physical statement that
at high energies the off-mass-shell corrections
for the m and the K are small. This leads us
also to the conclusion that the scales M~~ and

M~~ are equal, which is certainly necessary
if (15) holds. We point out further that since
we only go off the mass shell in the external
particles, the intermediate states Ij), all phys-
ical, that appear in the unitarity sum for oz~
are identical with the intermediate states for

This gives added reason for setting M&@
=M@

Finally, we point out that one could apply
the same reasoning to spin-& particles. Car-
rying out a similar analysis for example for
the A hyperon and the neutron as we did for
m and K, we get

the spin-& field to its source we use the Dirac
operator instead of the Klein-Gordon operator
as before. We remark, however, that in this
case one feels more uneasy about the off-mass-
shell corrections; first, because the masses
are larger, and secondly because the off-mass-
shell continuation is not done only through func-
tions analytic in the external mass variable,
but we have also to use zero-mass spinors.
The method considered in this paper cannot
determine ratios of Z, /Z, . For if we take ra-
tios of matrix elements of commutators of spin-
zero fields and those of anticommutators of
spin-& fields, we have to multiply numerator
and denominator by different powers of p, and
end up with sum rules that diverge with differ-
ent powers.

We close by making two remarks about the
relation of our result to internal symmetries
in general and SU(3) in particular. First, with-
out any internal symmetry it is practically im-
possible to check the ratio in (16) experimen-
tally. Secondly, if we only take ratios for par-
ticles belonging to the same multiplet of an
internal symmetry group, the assumption we
have made can be tested, as will be shown in
detail in a forthcoming paper.
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the Rockefeller University for several extreme-
ly helpful discussions.
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