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Strong evidence now exists that an F& center
is simply an F center with an impurity ion at
a nearest-neighbor site. ' ' While similarly
perturbed centers involving F aggregates would
likewise be expected, their existence has not
been clearly demonstrated. The purpose of the
present note is to report evidence in KC1 of the
simplest such association, an M center with
a Na ion neighbor, i.e. , an Mg center.

The usual M center consists of two nearest-
neighbor E centers along a (110) lattice direc-
tion. ' ' Its main transition, the M band, lies
on the low-energy side of the F band. Figure
1 shows the absorption in this spectral region
for three crystals which differ primarily in their
Na+ concentration. Curve a shows the M band
in an undoped crystal with a natural content of
0.003 mole%%uo NaCl. Compared to this spectrum,

curve b reveals a weak absorption at about 820
mp, in a crystal with 0.04 mole% NaC1. The rel-
ative size of this shoulder absorption increases
for crystals with increasing NaCl content until
it predominates. This is evidently the case for
a crystal containing 0.35 mole% NaC1, as shown

in curve c. Similarly, the size of the F~ band

(at about 580 mp) relative to that of the F band
is very small for the crystal of Fig. 1, curve
a, but is comparatively larger for crystals with
increasing Na+ concentration.

The M center has three symmetry axes along
which its optical dipole moments lie. One is
the (110) vacancy axis, which is the direction
for the M band. The other two are the (110)
and (100) directions perpendicular to this axis.
M-center transitions with moments along these
normally overlap the F band. A common pro-
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FIG. l. Absorption spectra measured at liquid-he-
lium temperature for three crystals differing in Na+

content. Curve a refers to an undoped sample (actually
containing 0.003 mole% NaCl); curve b refers to a sam-
ple with 0.04 mole% NaCl; curve c refers to a crystal
with 0.35 mole/o NaC1.

tais in which the centers giving the absorption
in the I-spectral region were oriented first
with [011]E light and then with [010]E light. The
solid curves relate to a crystal with dichroism
due almost entirely to the centers giving the
820-m p, absorption. This was accomplished
by preparing a crystal with spectrum similar
to Fig. 1, curve c, and exposing it to polarized
F light at liquid-helium temperature for a rela-
tively short period of time. A separation is
possible since these centers reorient much more
rapidly than I centers. One also avoids FA-
center reorientations at this low temperature. '
The dashed curves shown in Fig. 2 refer to a
crystal with oriented M centers alone.

cedure for determining these is to measure
the F absorption with polarized light after re-
orienting M centers with polarized F light at
low temperatures. " It turns out that both
the (110) and (100) transitions in the E region
are effective in causing reorientations.

Specifically, to determine the (110)M-cen-
ter absorptions one might expose a crystal con-
taining F and M centers to F light propagating
in the [100]direction with electric vector ori-
ented in the [011]direction. The dichroic spec-
trum, which is the absorption difference, [Oll]
-[011], for light again propagating in the [100]
direction, contains only the (110)M-center
transitions. The reason for this is that the sub-
traction effectively removes absorptions due
to isotropic centers like the F center, and also
the (100)M-center bands, since dichroism is
not induced in these using this experimental
ar rangement.

The (100) M transitions can be determined
from (100) dichroic spectrum using the same
arrangement after orienting with light polar-
ized in the [010]direction. This situation, how-

ever, is complicated by the fact that [010] light
induces dichroism in both sets of transitions.
However, the actual (100) transitions are eas-
ily determined as follows: It can be shown that
when the (100) and (110) dichroic spectra are
scaled for equal M-band dichroism, then the
contributions of the (110) transition in the vi-
cinity of the F band have the same magnitude
but opposite sign. Thus, addition of the (100)
and (110)dichroic spectra gives the (100) tran-
sition.

Figure 2 shows dichroic spectra for two crys-
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FIG. 2. Normalized dichroic spectra measured at
liquid-helium temperature for two crystals; one con-
taining only oriented M~ centers (the solid curves),
the other containing oriented I centers alone (the
dashed curves). M~ centers were oriented at liquid-
helium temperature; M centers, at about 200'K. (a)
The difference in absorption, [011]—[011], after ori-
enting with [011]E light. These give the (110) tran-
sitions. (b) The difference in absorption, [001]—[010],
after orienting with [010] I" light. (c) The sums ([001]
—[010])+[[011]—[011]). These give the (100) transitions.
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It is evident from these curves that the two
centers are similar in several important re-
spects. Their absorptions in the M region ex-
hibit both (110) and (100) dichroism, consis-
tent for a (110)-type center. Each has sim-
ilar transitions in the I" region with correspond-
ingly oriented dipole moments. By contrast,
the I-center's (100) absorption bands in the
I" region lie at slightly longer wavelengths than
those of the new center. Moreover, the new
center has an absorption at 610 mp, on the long-
wavelength side of the F band, not present in
the M-center spectrum while the M center has
a weak absorption at 634 mp, absent in the new
center.

The over-all similarity in both the behavior
and the absorption of the two centers leads one
to conclude that the new center is simply a per-
turbed M center. From its dependence on im-
purity concentration it is very likely perturbed
by a neighboring Na+ ion. "

Unlike the + center, the I center has several
nonequivalent nearest-neighbor sites. If these
were equally likely, one would possibly observe
several overlapping bands in the M region. The
fact that one transition is observed predomi-
nantly is an indication that one configuration is
most probable. From the over-all differences
in the M and M~ spectra, it is likely that the
Na+ ion lies somewhere in the (100) plane con-
taining the M center. The substitutional site
along the (110)direction bisecting the center
would give a configuration with the highest co-
ordination and symmetry, and is considered
the most reasonable alternative.

Na+ has always been a rather common impu-
rity found in KCl crystals, particularly a num-

ber of years ago. Thus, M~ centers could have
formed in earlier studies along with the usual
M centers during the +-aggregation process.
This is suggested by the variation in reported
M-center properties such as the M-band peak
value. " It is hoped that the results of the pres-
ent investigation will provide a new basis for
possibly understanding these former anomalous
effects.

The author is indebted to Dr. Clifford C. Klick
and Dr. James H. Schulman for their helpful
comments.
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