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There has been considerable interest recent-
ly in the effect of magnetic interactions among
the conduction electrons in metals on the de
Haas-van Alphen oscillations of the magnetic
susceptibility. ' ' Shoenberg' made the conjec-
ture that the correct oscillatory magnetization
could be obtained by substituting B for H in the
standard expression' for the magnetization
M, (H), in which all interaction effects are ne-
glected. Pippard' has shown that this proce-
dure leads to a many-valued function M(H),
and he has investigated the thermodynamic
behavior of the system as a function of H for
this situation. Condon~ has suggested that un-

der appropriate experimental conditions the
magnetization within the material will be non-
uniform, and that the resulting situation can
be described in terms of diamagnetic domains.

The object of the present note is to point out
that within the framework of the random-phase
approximation, the system will exhibit an in-
stability by spontaneously supporting a spatial-
ly nonuniform magnetization of the form M(r, H)

=mo(H)+m, (H) exp(-iq r&) for that portion of
the M (H)-vs Hcurve for whi-ch (dM/dH) & --4m.

In the expression given above rz is the compo-
nent of the position vector normal to the dc
magnetic field, and q, the wave vector of the
spatially varying magnetization, is a uniquely
determined function of P. The values of m,
and m, can be obtained from the theory by sim-
ple intuitive arguments. We refer to this state
with spatially varying magnetization as a mag-
netization-density-wave (MDW) state. It is

apparent that this description of the system
is related to Condon's idea of diamagnetic do-
mains, although the exact connection between
the MDW state and diamagnetic domains is not
completely clear at present.

For simplicity we shall restrict our consider-
ation to an idealized system consisting of N

free electrons of charge -e and effective mass
m contained in a volume Q. A dc magnetic field
of field strength H, inside the sample is applied
parallel to the z axis. We shall follow an ap-
proach described in an earlier publication'
and assume that Bo, the magnetic induction in-
side the material, is related to H, by the equa. —

tion

Ho = p '(I Bol)BO.

The Hamiltonian for a single electron inside
the sample is

X = (I/2m)[p+ (e/c)A, ]',

where A„ the vector potential associated with

B„ is taken to be A, =(O, Box, o). The eigen-
functions and eigenvalues of X are the well-
known Landau levels:

KOI v)=ROInk k )=F. (k )Ink k ),
y z n z y z '

Z =Z (k )=a~ ( +n-,') k'+k '/2m.
v pl z c z

Here &c =eBp/mc; the quantum number n can
be any non-negative integer, and the allowed
values of k and kz are determined by applying
standard periodic boundary conditions. An in-
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finitesimal disturbance in the form of a time-
independent magnetic field H, is introduced in-
side the material. This disturbance induces
a response in the system, and the total pertur-
bation acting on any electron is the self-con-
sistent field given by the sum of the magnetic
field strength H, and the field set up by the re-
sponse of all the other electrons in the system
to the self-consistent field. Clearly if H, and

B, are independent of position, we could replace
Ho by Ho+ H, and B, by Ho+ 8, in Eq. (1) and
obtain

where summation over repeated subscripts is
implied, and where

I. . =™ E, — E E,-Eij N 0 v' 0 v v' v
vv

x(v'I V. (q) I v)(v'I V.(q) iv)*.
2

Here fo (E) is the Fermi distribution function
and the operator V(q) is given by

~~ ~W
, iq r , iq r

Vjqj = —,e v+-, ve

(9)

(1O)

&&/Bg=a '(I&oi),

for H, normal to H„or
(4)

for H, parallel to H, . In the present analysis
we allow H, to be an arbitrary function of posi-
tion, and, in the spirit of the random-phase
approximation, obtain each Fourier component
of the response of the system in terms of the
corresponding Fourier component of the self-
consistent field.

For simplicity we shall consider H, to be of
the form P, (r) =H, (q)e ~qX. The —Hamiltonian
for a single electron in the presence of B, and
the self-consistent field is then given by

K =+ +Xi,
where

All the nonvanishing matrix elements of V(q)
are evaluated in Refs. 6 and 7. In the present
case the self-consistent field is time indepen-
dent, so that we need only the zero-frequency
limit of Eqs. (8) and (9). Now Maxwell's equa-
tions relate the magnetization to the induced
current density:

p x M=c 'j.

H (q) dH(q) (u
'

a, (q) da(q) c'q' xx
=1+, , 1+1 (q) . (12)

In this equation Ixx is a component of the ten-
sor I evaluated at zero frequency. By expand-
ing' the matrix elements of V(q) in powers of
qv F/&u, we obtain the result

By considering the case where H, is parallel
to Hp we obtain the following relation between
H, (q) and B,(q):

R, = (e/c)(v A+A v). (7)

In Eq. (7) v is the velocity of an electron in the
presence of B„and A is the vector potential
of the self-consistent field. In writing down
Eq. (7), we have neglected terms of higher or-
der than linear in A, and we have chosen a
gauge such that the scalar potential of the self-
consistent field vanishes. %e are interested
in the diamagnetic response of the system, so
for simplicity we have omitted the effect of the
electron spin.

We solve the linearized equation of motion
of the single-particle density matrix and ob-
tain a relation between matrix elements of
Xy and matrix elements of p„ the deviation
of the density matrix p from its value p, in the
absence of the self-consistent field. From this
relation we can obtain the following expression
for the Fourier components of the induced cur-
rent density"':

(8)

2 2

1+f =, (e ')'+2(e )——', —,[(e ')'
xx m(d mes '

c c

+3(e ')+(h'(u '/4)((e )'+1)] .
c

In this equation we have introduced the symbol
ez ——5&ac(e+ 2). Furthermore, the symbols (A)
and (A)' denote the following averages:

(A) =N '5~ f (E )A,

(14)

where g is the chemical potential. The aver-
ages appearing in Eq. (13) can be evaluated
in terms of oscillatory functions by using the
Poisson sum formula in a way described by
de Freitas, Quinn, and Rodriguez. ' By retain-
ing only the leading oscillatory terms in the
expressions for (ez") and (ei")', we obtain the



VoLUME 16, NUMBER 17 PHYSICAL REVIEW LETTERS 25 APRIL 1966

result

dM(q) 1 J' 3&v 'v '
( q'v

dH(g) 4m[ 4e'~ ' '( 4 ' j I'
c

!
c

Here M(q) is the qth Fourier component of the
magnetiza. tion and H(q) is the corresponding
Fourier component of 8,. The Fermi velocity
and electron plasma frequency are denoted by

vF and (d~, respectively. The symbol 5, stands
for the oscillatory function

1/2 ~ r 1/2
kT/2/0 ) (—1) x cos(7j'grm0/rn) cos(2vr&0/h&u ——,'~)

0( 8(d sinh(2m'rkT/h(u )c r=1 c

where g, is the chemical potential in the absence
of the dc magnetic field, g is the electron g
factor, and pn, is the mass of a free electron.
The effect of the electron spin on the diamag-
netism has been included for the sake of com-
pleteness; it can be omitted by setting g equal
to zero. If we take the limit as q approaches
zero, Eq. (15) is equivalent to the derivative
with respect to H of the function M(H) =M, (JI
+4wM) discussed by Pippard' (actually Pippard
discusses the case where only the first harmon-
ic, i.e. , the r =1 term in 5„ is of importance).
In Fig. 1 we plot M(H) vs H following Pippard.
At points B and D it is apparent tha. t dM/dH

diverges; throughout the region between g and

D, dM/dH & -I/4~. It is not difficult to see that
in this situation dM(q)/dH(q) will diverge for
the value of q given by

2(d j 4 c2(d 2 )1/2

q =+ 11--

The divergence of dM(q)/dH(q) implies that
even for H(q) equal to zero it is possible to
have a finite spatially oscillating magnetization
M(q). The divergence of dM(q)/dH(q) is equiv-
alent to stating that v(q) =0, where H(q) = v(q)B(q).

jL

M

This situation is somewhat analogous to the
familiar situation of an ac electric field in a
metal for which D(&u) = e(~)E(&u). The condition
e(&u) = 0, the vanishing of the dielectric constant,
allows a solution of finite E(~) even when there
is no driving term D(&u); this is just the famil-
iar condition for plasma oscillations. In the
present study we are interested in the case
where H is uniform (at least when depolariza-
tion effects are neglected), so that H(q) must
vanish for q different from zero. However,
we have just shown that a state can still exist
for which the magnetization is an oscillatory
function of position of the form

sqy -sqyM=m, +m, (e y+e "). (18)

where q is given by Eq. (17). Actually q, be-
ing a difference between two wave vectors ky,
must satisfy periodic boundary conditions, so
that not all values given by Eq. (17) are allowed.
The allowed values are the solutions of Eq. (17)
which equal 2v/L times an integer, where L
is the length of the sample in the y direction.
We can obtain the values of ma and m, by not-
ing that at cos(qy) =+ 1, M(H, y) has a maximum
or minimum. Because the wavelength of the
oscillatory magnetization is very large, we

expect these two values to correspond to the
two stable solutions M(H) for the given H. If
we call these solutions M+ and M, then

m, =-,'(M++M ),

m~ = 2(M+-M ). (19)

FIG. 1. The magnetization M{0) vs 0, the intensity
of the magnetic field inside the sample, for a case
when magnetic interactions are important.

Thus the present analysis predicts that for
HD &H &HB (where HD and IIB are the values
of H at points D and B of Fig. 1), a MDW state
with magnetization described by Eqs. (17)-(19)
can exist. We have found this state by study-

ing the relation between H and gg, the magnetic
field intensity and magnetic induction inside
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the material. To describe the thermodynamic
behavior of a real system, H or B must be re-
lated to the field outside the sample produced
by the external magnet. Thus a number of fac-
tors which have been omitted from the present
analysis (e.g. , boundary conditions, depolar-
ization effects, etc. ) will be important. Dis-
cussion of real systems will be taken up in
future work.
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The dc resistivity in the superconducting
mixed state is essentially zero unless l J&&HOI
~ e&, where J is the transport current densi-
ty, H, is the magnetic field perpendicular to
a thin plate sample, and n~ is a measure of
the strength of the flux pinning defects. For
larger currents the flux tubes flow over the
pinning centers giving a dynamic resistivity

pf = p~H0/Hc2 where pn is the normal resis-
tivity. ' For an "ideal" material (no pinning
centers), nc = 0. At microwave freiluencies
the resistance of all materials is that of the
"ideal" material, even for transport currents
several orders of magnitude below the criti-
cal value. ' In this Letter a simple model for
the oscillatory motion of flux tubes in the pres-
ence of pinning centers is given, and the fre-
quency dependence of the flux-flow resistance
is calculated and is shown to be in reasonable
agreement with experiments on Pb-In and Nb-

Ta alloys. It appears that rf techniques will
prove valuable in studying the detailed nature
of flux pinning centers in the mixed state.

At fields well above H~y the magnetic ener-
gy density required to change the flux-tube
lattice constant d is considerably greater than
that involved in pinning. The lattice is there-
fore quite rigid, and, over a distance large

compared to d, the flux tubes form a "single
crystallite. " The size of the crystallites will
be determined by the relative strengths of the
pinning and magnetic energies. These crys-
tallites are equivalent to the "flux bundles"
of Anderson and Kim. ' If a force (due to a
transport current) is exerted on these cystal-
lites, they will displace with respect to the
pinning centers. Since the displacement of
all of the crystallites is approximately the
same, the forces they exert on each other due
to the displacement will be small. Following
Anderson, we assume that they can slide read-
ily with respect to each other. The equilibri-
um position and orientation of these crystal-
lites will largely be determined by the poten-
tial energy due to the local pinning centers.
If there are many pinning centers in each flux-
tube crystallite, the potential energy or "pin-
ning potential" will be periodic in the flux-tube
lattice constant. It is reasonable to assume
that the pinning potential is a fairly smooth
function of x, , well approximated by O' =P [1
-cos(2wx/d)]. The force (P exerts on each flux
tube is

8 6' 2m& . 2@x
sind .
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