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triple-coincidence detection efficiencies as a
function of angular separation between detectors
for free positron annihilation, S, positronium
decay, and forbidden 'S, positronium decay,
respectively; p is the fraction of positrons which
forms positronium; and f is the fraction of 'S,
state positronium which undergoes three-quan-
tum decay in violation of C invariance. Thus,

+Iox "Al'/"Al

p+ ps-c, (s)/sc, (s) + 371pfA, (s)/z, (s).

The same average value was observed for (Nlox
NAl)-/NA1 1n sets of m~a~~~~me~ts at diff~~-

ent angular separations. We assume E,(S)
=K,(S) =E,(S), which is reasonable on a physi-
cal basis and is not in conflict with the above
result.

Six sets of measurements in the described
geometry gave values 0.02 ~ (Nlox NAl)/NA1
& 0.10. The average results gave a value for
f= 0.0005+ 0.0003. One notes that if C-invar-
iance violation exists in the decay of 'So state
positronium, there is no a priori reason why

it should not exist in the singlet annihilation.
Therefore, technically (Niox NA1)/N-A1 can

be interpreted as a measure of the excess of
C-nonconserving decay in the ground-state sing-
let positronium over similar free singlet decay.
From this point of view, one cannot conclude
that C conservation was established within the
accuracy given but indicates only that C non-
conservation, if any, is independent of the ra-
dial quantum state.
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It is well known that strongly interacting par-
ticle systems which have zero strangeness (S)
and baryon number (B) are approximate eigen-
states of the operator' G = C exp(imI, ), where

C represents charge conjugation and I, is the
"y" component of the isospin I. Such systems
(including single-particle states) are eigenstates
of G, I, and I„and the neutral members are
also eigenstates of C. The isospin has integer
eigenvalues for these systems, and C and G

have eigenvalues xl (referred to hereafter sim-

ply as a).
The strong interactions are believed to con-

serve C and to be invariant with respect to ro-
tations in isospin space. This would imply that

transitions between such states, which proceed
via-the strong interactions, should conserve G,
since the operator G performs a 180' rotation
about the I, axis followed by the operation C.

If we take a completely experimental approach
to this question, however, there does not seem
to be any clear-cut measure of the extent to
which G is conserved, at least when considered
in the following spirit. We assume that I' =I,2

+I,'+I,' and C are conserved (along with total
angular momentum and parity) and that all
eigenstates of I, I„C, and G are constructed
in the usual manner such that the familiar re-
lationship

G = C(-1)I

is valid.
There is, in fact, ample evidence that I' is

conserved for these systems, as evidenced

by the nonoccurrence o." the decays w - v++m

cp-v +m, q'(959)-3n, andA2+-m++mo. The
.conservation of I„moreover, follows from
conservation of charge (Q), since Q =Is for
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these systems. Conservation of I and I, does
not imply conservation of I, however, since
one can conceive of a situation in mhich the
interactions of these systems are invariant with

respect to rotations about the I, axis only. In
such an azimuthally symmetric isospin inter-
action, G parity need not be conserved. It is
the purpose of this note to investigate the ex-
perimental evidence that pertains to this ques-
tion for S = B = 0 systems. '

First we note that under these ground rules
(i.e., conservation of I', I„and C), there can
be no tests of G conservation for transitions
between neutral systems. This is because both
the initial a.nd final states obey (1), and there-
fore conservation of both I' and C implies con-
servation of G. Conversely, violation of G for
neutral - neutral transitions is not allowed.

However, for charged systems (which are
not eigenstates of C) the conservation of I' does
not imply conservation of G. Thus the question
of G conservation for charged systems is ex-
perimentally testable. This can best be illus-
trated with an example: Suppose we have a
meson (XP) whose quantum numbers are known

to be J+IG = 1 1 . The decay X+-n++7to is
then allowed by conservation of total angular
momentum (4), parity (P), and I, but it is
G forbidden. Thus the existence (nonexistence).
of this mode would be good evidence against
(for) G conservation.

We nom turn to the existing data which might
pertain to this question. According to the above
arguments we only need consider charged sys-
tems.

The rho meson. —The quantum numbers are
mell established as J+I =1 1+. The G parity
is known to be + since the decay p -v++ m

with L =1 proves that C =-. The relation (1)
then establishes G =+. The observed decay
p+-71++m js therefore G allowed and does not

give us any information on the possible exis-
tence of G forbidden decays. The decays p+
-qP+m* or (3m), which would violate G invari-
ance, do not seem to be present (data from
the Michigan bubble-chamber group indicate
a branching ratio of less than 1%%up for each of
these modes), but these might be this small
simply from phase-space considerations. Tak-
ing the cube of the ratio of the center-of-mass
momenta for rm to g~ decays gives an g~ branch-
ing ratio of only 2.3%, for example. Thus, al-
though observation of a reasonably large (say
10'%%up) branching ratio for either of these modes

would be good evidence against G conservation,
their nonexistence is probably not good evidence
in favor of G conservation.

The A, meson. —There have been several
published reports' ' on the existence of the

A,*(1310MeV) meson. The quantum numbers
which seem to be fairly well established are
J I=2+1. The evidence for the A, is extreme-
ly scanty, the only claim for it being a small
bump in a Ky Ky mass spectrum, ~ which mould
indicate G = —.If G is in fact negative, then
there does not seem to be much hope of testing
G conservation in A, decay since the 2m mode
is forbidden by I', and the other G-nonconserv-
ing modes (such as ~m) might very well be
dominated by the observed G-conserving modes
pv, qm, and K K . If, on the other hand, G

is + for theA, ', then the p~ mode of theA, ~

proves that G is not conserved. In this case
the most likely allowed (by I +C) modes for
the A, will be v n, g m+m, 4m, and KKm, and
the A, width might be much narrower than that
of theA, .

An assignment G =+ for the A, would, in fact,
prohibit the production of the A, by single-par-
ticle (m, p, A2 ) exchange in m+-nucleon col-
lisions so this might even explain why the A,
has been so elusive.

It should be mentioned that there is evidence'
for a m+m n resonance around 1300 Me& pro-
duced in m+d collisions. However, it does not
seem to be associated with p~w+, and therefore
cannot, at present, be considered as the A, .
If further data are available to establish A,o

- p +~, Ky Ky or g'~' then the A, must have
G = —,in which case, as already pointed out,
theA, + is not likely to shed any light on the
question of G conservation.

There exist other inconsistencies" in the KK
and g~ branching ratios of the A,*, but the hy-
pothesis of G nonconservation gives no obvious
clarification of these. One possibility would
be to let the D meson" have IG=1+ with J+
=0, 1+, or 2, and let the main mode of the
D~ be pm. The 1290-MeV p'm+ peak observed'
at 8 GeV could then be due to the D+ (instead
of the A,), and the absence of the gpss+ mode
would be explained.

The A, and B mesons. —These both have been
assigned I = 1, but their status as states with
definite quantum numbers is quite doubtful. "'~
Their neutral members have not been seen,
so even if they are real they do not, at present,
offer any good tests of G-parity conservation.
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%ays to test G. —The nonconservation of G

can be demonstrated by finding charged states
that decay into modes of different G, such as
~m and pm and ~Tt. The proof that G conserva-
tion is valid is, perhaps, more difficult. If
one could find, for example~ an&0 go+„0
with odd J, then the nonoccurrence of I+-m+m
would be good evidence in favor of G conser-
vation.

There do not seem to be any simple tests
for Gin pn or np interactions since it is not
obvious how to prepare initial states of known

G for these systems. One possibility would
be the comparison of p +p- y' +n' with p+n
—y +m . 'These two processes do not have
to be identical if G is not conserved.

Conclusion. —We conclude that present data
on the strong interactions of 8 =B=0 systems
offer good evidence in favor of I' conservation
but do not exclude the possibility that G is not
conserved. " The question of G conservation
can be, in principle, subjected to sensitive
experimental tests, but whether or not these
tests will become available may depend large-
ly on the cooperation of nature.

*Research supported in part by the U. S. Atomic En-
ergy Commission.

T. D. Lee and C. N. Yang, Nuovo Cimento 3, 749
(1956).

2There is good evidence for I conservation in nucleon-
nucleon systems (8 = 2, ~ = 0) and in pion-nucleon sys-

tems @=1,S =0), but comparable evidence does not
exist for S =B =0 systems.

3G. Goldhaber et al. , Phys. Rev. Letters 12, 336
(1964).

4S. U. Chung et al. , Phys. Rev. Letters 12, 621
(1964).

5M. Aderholz et al. , Phys. Letters 10, 226 (1964).
M. Deutschmann et al. , Phys. Letters 12, 356 (1964).

7J. Alitti et al. , Phys. Letters 15, 69 (1965).
R. L. Lander et al. , Phys. Rev. Letters 13, 346a

(1964).
BThe recently discovered D meson is a possible can-

didate for such an. &2 although the suggested spin-
parity assignments do not include 2+.

~ A. Forino et al. , Phys. Letters 11, 347 (1964); H. O.
Cohn, W. M. Bugg, and G. T. Condo, Phys. Letters 15,
344 (1965); Michigan Bubble Chamber Group (unpub-

lished).
E. Ferrari, Phys. Letters 16, 93 (1965).
D. H. Miller et al. , Phys. Rev. Letters 14, 1074

(1965); Ch. D'Andlau et al. , Phys. Letters 15, 347
(1965).

~3L. Seidlitz et al. , Phys. Rev. Letters 15, 217 (1965);
M. A. Abolins et al. , in Proceedings of the Second Topi-
cal Conference on Resonant Particles, Ohio University,
Athens, Ohio, 10-12 June 1965 (unpublished).

~46. Goldhaber, S. Goldhaber, J. A. Kadyk, and Ben-
jamin C. Shen, Phys. Rev. Letters 15, 118 (1965).

~5A G-nonconserving interaction can, in general, lead
to a mass splitting within a multiplet. The fact that the
observed splittings of 7t+ from. g and p+ from p are
small does not, however, seem to be a definitive mea-
sure of the extent to which t" is conserved. For exam-
ple, NN loops will not cause any G mixing into p+ or
7t+ since these mesons have quantum numbers such
that they can be coupled to NN states which have only a
single G value.

QUARK MODEL FOR FORWARD SCATTERING AMPLITUDES

H. J. Lipkin and F. Scheck*

Department of Physics, Weizmann Institute of Science, Rehovoth, Israel
(Received 29 November 1965)

%e should like to point out some remarkable
relations which follow from an extremely sim-
ple quark-model' assumption. These include

(a) relations between meson-baryon and bary-
on-baryon forward-scattering amplitudes which

are in good agreement with experiment and

which are not obviously obtainable in any other

way, and (b) relations for meson-baryon scat-
tering which are also obtainable from higher
symmetries. Our basic assumption is that the
forward-scattering amplitude for any reaction
is simply the sum of all possible contributing
two-body quark-quark or quark-antiquark scat-

tering amplitudes.
Consider, for example, ~+P scattering. We

denote the proton and neutron by P and N, re-
spectively, and the basic triplet of quarks by

p, n, X, where p, n constitute an isodoublet of
strangeness zero and ~ is an isosinglet of strange-
ness -1. The quark constitution of z+ is (pn),
of P is (ppn). The w+P forward-scattering am-
plitude is then given by'

(m'PI~'I)
= ((p&) (pp~) I (p&) (pp&))

=2(pp Ipp)+(pn Ipn)+2(np Inp)+(nn Irwin). (1)


