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A theorem was recently proposed! which sim-
plifies the concepts and formalism of quantum
optics. Subsequently, a “disproof” of the the-
orem appeared.? The present Letter has a
three-fold purpose: (1) to expand the argument
on which the proof of the theorem is based;

(2) to show that the “disproof” is based on a
misinterpretation; (3) to illustrate the theorem
with a simple but instructive example.

The theorem under discussion states that
“all sources on which the effect of the ‘detector’
is negligible may be treated as classical sources
in the interaction under consideration,” and
is followed by the corollary that “the field act-
ing on a quantum-mechanical system —when
the sources are of the above type—consists
of the superposition of a classical field and
the ‘vacuum’ field.” As explained in I, the word
“detector” in the theorem stands for all sys-
tems the interaction of which with the field is
of interest, and includes the dissipation mech-
anism; the “vacuum” field, in the presence
of dissipation, is that due to the fluctuations
of the dissipation mechanism.?’* The theorem
is proved by considering a single mode of fre-
quency w and dissipation constant B(<w), ex-
pressing the coordinate and momentum of the
radiation oscillator by®
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and showing that the commutators of gg and pg
with all variables involved in the interaction
under consideration are negligible, so that gg
and pg are effectively c-numbers. It is argued
that gy, (¢1) and gg(¢) must commute with gg(ts)
for all ¢, and ¢,; otherwise a measurement on
the detector or dissipation mechanism will dis-

turb the source, which is contrary to the hypo-
thesis. Furthermore, ¢ is measured by mea-
suring certain dynamical variables of the detec-
tor; by similar argument, therefore, ¢(¢,) com-
mutes with qs(tz). Similar reasoning applies

to pg, and also shows that gg(f1) commutes with
ps(tp). Thus, gg and pg commute with all per-
tinent variables.

We now fill in some of the details of the above
argument and make it more precise. The implic-
it mathematical hypothesis is the statement that
[S¢,),F(t,)] and [S(t,), D(¢,)] are negligible for
all /, and ¢,. Equations (1) and (2) show that this
will assure the negligibility of the commutators
of gg or pg with g, qp, pp, and pp; the remain-
der of the argument is straightforward. Now,
for ¢t =t', the commutator of two variables [A(¢),
B(t')] is a measure of the disturbance of one
—either one—by a (ideal) measurement of the
other. For t<t', it is a measure of the distur-
bance of B(t’) by a measurement of A(¢).® For
t,<t,, the two commutators above are a mea-
sure of the disturbance produced in the source
by a measurement on the “detector”; thus, if
this disturbance is negligible the commutators
are negligible. If one assumes that the commu-
tators are of the same order of magnitude for
t,>t, as for ¢, <¢,, then the statement that the
effect of the “detector” on the source is negli-
gible is equivalent to the above mathematical
hypothesis. Such an assumption is obviously
true if the negligibility of the commutators
(for t,<¢,) is due to weak coupling between de-
tector and source, and is implicitly made in
1.7

It is possible to reformulate the theorem so
that reference to the detector is eliminated.
Consider the field resolved into modes in such
a manner that the weak coupling between source
and “detector” is due to weak coupling between
the source and those (few) modes which signifi-
cantly affect the “detector,” these modes be-
ing referred to as the “detector field.”® The
theorem may now be stated as follows: If the
effect of the detector field on the source is
negligible, the contribution of the source to
the detector field may be described classically.
The sources to which the theorem applies may
radiate strongly into the entire field, that is,
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into modes not coupled significantly to the de-
tector, but only slightly into the detector field.

If there are no other modes into which the source
radiates, the negligibility requirement implies
that the source is coupled to the detector field
only for a time short compared to the lifetime

of its excited state, before being affected by
other influences.

The essence of the theorem is that sufficient
decoupling (in the above sense) makes any source
classical as far as its contribution to the detec-
tor field is concerned. It might be argued that
decoupling makes the radiation energy from
the source vanish to the same order (in coupling
constant) as some of the commutators, and that,
consequently, the “classicalness” is illusory.

It should be noted, however, that commutators
small compared to those of the “vacuum” field
are insignificant, and play no role in experi-
ments (where minimum uncertainties are intro-
duced by the “vacuum” field), while energies
small compared to those of the “vacuum” field
can be measured (since the nonthermal “vacu-
um”-field energy cannot be absorbed, in con-
trast to the energy radiated by the source),

and frequently occur in optical experiments.

The “disproof” of Glassgold and Holliday
consists of applying the theorem to a case in
which no measurements may be made until the
source is decoupled from the field. Since the
detector cannot then affect the source, they
argue, the theorem implies that the contribu-
tion of any source becomes classical as soon
as it is decoupled from the field, and this in-
volves “the incorrect assumption that, once
two systems no longer interact, a measurement
involving one system cannot influence the statis-
tical properties of the other system.”? It is
not difficult to see that this argument contains
a misinterpretation of the phrase “effect of
the ‘detector.’” The theorem actually requires
that the source be insensitive to the “detector”
(or to measurements) at any —or all—time.

This follows, firstly, from the fact that the
“detector” includes the loss mechanism, which
exists at all times and determines the proper-
ties of the mode under consideration, and, sec-
ondly, from the fact that the meaning of ¢ and

p is associated with measurements made by

the detector; the detector must therefore be
available for such measurements whenever g
and p are defined. (One could insert in the the-
orem the parenthetical expression “at any time”
after the phrase “effect of the ‘detector,” ” but
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it is really superfluous.) The theorem is proved
only for the case of weak coupling between source
and detector field, while the case considered in
the “disproof” may have arbitrarily strong cou-
pling (prior to the decoupling).®

The present formulation of the theorem is
qualitative; negligibility is not defined numer-
ically and no prescription is given for describ-
ing the source classically. A simple example
will, therefore, prove instructive.’® We con-
sider a mode of the detector field weakly cou-
pled to a two-level electric-dipole system (TLS)
in resonance with the mode. The time under
consideration (the time during which the cou-
pling lasts, uninterrupted by the influence of
other systems) is sufficiently short so that the
expectation value of the energy radiated by the
TLS is a small fraction of its total energy. Per-
turbation theory is obviously justified, and we
ignore interaction terms of higher order than
the second. We are not concerned with dp and
pp in the present instance, and write

9=dptdg DP=bp+by (3)

S(¢) is now the electric dipole moment (in dimen-
sionless units) of the TLS and, in zeroth order,
is given (the notation is such that E,<E,) by

0 —_ .
S =exp(=iwt), §,©=5,0%, §,© =g, ©=0,

Expressions for gq and pg up to second order
are available. The first-order expressions
are obtained from Egs. (1) and (2) by replacing
S(¢,) with S®(¢,) and changing the lower inte-
gration limit to zero, and the second-order
expressions are given by

0 ? 2% Bt p )

x-e P sinugr), @)
p B =2 p)tffat b))

x (1-e ") cosir-t. ), (5)

where I, =-1, I,,=1, I,,=1,, =0, and {=0 is
the time at which the coupling between TLS
and the mode begins. The expectation value
of the energy lost in time ¢ by the TLS to the
mode is

2(2/8%w ) ay 1 pt + 2P 1)), (6)

where |a,|? is the probability of finding the TLS
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in the upper state, and the temperature of the
dissipation mechanism has been taken to be
zero, for simplicity.

Up to second order, we have

450, pg0]=~2i(a’/8" 002, @)

lag®), )] =[a5 ), ()]

—iBhi-e"PH2. )

It is seen that the ratio of these commutators
to that of the “vacuum” field {[¢r (), pF ()] =4}
is of no greater order of magnitude than that
of the expectation value of the fraction of the
total energy lost by the TLS to the mode. Here
we have a measure of the negligibility of the
commutators.

We ask next, how is the source to be described
by a c-number ? Consider the expressions

9'=4qp+4q,, P'=PptD )
where q, and p, are c-numbers of first order,
and construct the characteristic functions

fu, v)=(expi(ng’ +vp')), (10)

@ (u,v)=(expi(ug +vp)), (11)

where g and p are given by Egs. (3). The results
of a calculation up to second order' [and approx-
imations based on (3/w)<< 1] show that these

two functions are identical provided

@)= @™, (b= (p*), (12)
(@, =q"") +2gpq®),

(b 2= (b +2pp ™).

(13a)
(13b)

Thus, if g ¢ and p . are described statistically
according to Egs. (12) and (13), we obtain f=¢;
furthermore, the required expressions for
(gc3-(q0)? and (p,.*)—(p,)? are each equal to
(averaged over a half-cycle)
1

2(a®/8%) 14,1 (1-e "),
so that a statistical description is meaningful.
Since the characteristic function generates all
the moments of g and p (either directly or by
suitable rearrangement of the order), and since
[¢',2']=[g,P], we see that the statistical prop-
erties of ¢',p' are the same as those of g, p.
In particular, the expectation values of the am-
plitude and energy are the same. We have found,

(14)

therefore, an appropriate c-number descrip-
tion of the TLS to the field. Although the non-
classical aspect of the quantum-mechanical
source (noncommutativity of gs and pg with

all pertinent variables) is made negligible by
sufficient decoupling, the statistical aspect ob-
viously remains. It should also be noted that
q',p' describe a fully quantum-mechanical radia-
tion oscillator.?
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the hypothesis) that a (ideal) measurement on the
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as pointed out in I, source and detector are weakly
coupled.
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Yonly the results are presented here. A more com-
prehensive discussion will be published elsewhere.
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23ome of the conceptual “difficulties” cited in Ref. 2
are due to a lack of recognition of this fact. The

present theory is fully consistent with the quantum
theory of radiation.
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Recent experimental evidence indicates the
existence of nine J¥ =2" mesons: £(1250),
f'(1520), A,(1310), and K*(1430).! The approx-
imate validity of the mass formulas

fr+A,=2K*,
f=A4A,, (1)

(where particle symbols stand for particle mass-
es squared) makes it a simple possibility?® to
classify these nine 2" mesons in a reducible
SU(3) nonet, much like in the case of the fam-
iliar vector-meson nonet. Thus, for instance,

f and f’ are not pure singlet and octet members,
respectively, but are linear combinations of

the octet and singlet members. One can write
the 3 X3 matrix of the mesons as

FN2Z+AL N2 A" K*t
fN2=-AL/N2 K* . (2)
K*— KX —f’

Ty= Ay~

We now consider the effect of the 2% nonet
exchange in the reactions involving pseudosca-
lar mesons (M) and baryons (B). The M-nonet
coupling is pure D type given by?

v2d Tr({M, M}T,), (3)
while the B-nonet coupling can be D, F, and
S (singlet) type,
V2D Tr({B, B} T,) +V2F Tr([B, B]T,)
+vY2S Tr(T,) Tr(BB). (4)
Consider an elastic-scattering process A +B
—~A +B, where B stands for baryon and A for
baryon or meson (M). Let the sum of the par-

ticle and antiparticle total cross sections be
represented by

EAB=ot(AB)+0t(ZB). (5)
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The vector-meson-exchange contribution can-
cels out in this sum. At high energies, where
the scalar- and pseudoscalar-meson exchange

is presumably negligible, the 2" -meson exchange
will dominate the sum. In what follows, we as-
sume the 2+ mesons to lie on Regge trajector-
ies.

The question we would like to answer is wheth-
er the 2% nonet given by (2) explains the exper-
imental behavior of Z 4 g or whether addition-
al Regge trajectories are needed. We will as-
sume that the coupling constants or, more pre-
cisely, the relative values of the coupling con-
stants are given by exact SU(3) while masses
take on their physical values. This is, of course,
a crucial assumption. There are indications
from other sources, however, that such an as-
sumption should give reasonably accurate re-
sults. For example, for the difference between
particle and antiparticle total cross sections,
where only vector mesons contribute at high
energies, the vector-meson nonet with exact
SU(3) coupling gives good results.® Among 2%
mesons, it is also known that the exact SU(3)
prediction for A, exchange gives close agree-
ment with experiments. This has been confirmed
by the recent data on 7~ +p - n+n where only
A, exchange is possible. The experimental be-
havior of this reaction was correctly predict-
ed on the basis of Kp scattering and SU(3) in-
variance.? Furthermore, it is well known that
at high energy the experimental evidence do(n*
+p~KT+2h) /do(nt+p—71T+p) <1 at zero mo-
mentum transfer implies®

/ L. (8)

Znp’ "rp
The experimental data around 20 BeV/c give®

znp/zKp=1.2, )



