CAN I^2 BE CONSERVED, BUT NOT \vec{I} ?

Sidney Coleman

Department of Physics, University of California, Berkeley, California (Received 24 January 1966)

It is usually believed that the strong interactions conserve all three components of isotopic spin, \mathbf{I} . However, in a recent issue of this journal,¹ Vander Velde has suggested that they may, in fact, conserve only I_z and I^2 . In a nonrelativistic limit, it is easy to construct models which have this property (e.g., particles interacting through a potential which is polynomial in I_z). The purpose of this note is to show that in relativistic local field theory it is impossible to fulfill Vander Velde's speculation; if I^2 is conserved, \mathbf{I} is also.

A precise statement² of our result is this: We assume there exists a triplet of local Hermitian vector currents, $\vec{j}_{\nu}(x)$. We define the total isospin vector at time t by

$$\vec{\mathbf{I}}(t) = \int d^3x \, \vec{\mathbf{j}}_0(\mathbf{x}, t).$$

We assume I^2 is a well-defined operator whose domain includes the usual scattering states (actually, all we need is the vacuum), and which is independent of time. We then show that $\vec{1}$ is independent of time.

Proof: Since I^2 commutes with the Hamiltonian, the vacuum must be an eigenstate of I^2 :

$$I^{2} | 0 \rangle = \lambda | 0 \rangle, \qquad (2)$$

with λ some finite non-negative number. Thus

$$\lambda = \langle 0 | I^2 | 0 \rangle$$

$$= \langle 0 | I_{\chi}^{2}(t) | 0 \rangle + \langle 0 | I_{y}^{2}(t) | 0 \rangle + \langle 0 | I_{z}^{2}(t) | 0 \rangle, \qquad (3)$$

which implies

$$\langle 0 | I_{\mathcal{N}}^{2}(t) | 0 \rangle \leq \lambda.$$
(4)

On the other hand, if

$$\langle 0|j_{0x}(\mathbf{\bar{x}},t) \int d^3y \, j_{0x}(\mathbf{\bar{y}},t) |0\rangle = a, \qquad (5)$$

then the translational invariance of the vacuum

implies that a is independent of $\mathbf{\tilde{x}}$ and t; thus,

$$|0|I_{2}(t)|0\rangle = \int d^{3}x a.$$
 (6)

The only way Eqs. (4) and (6) can be consistent is if a = 0, which implies

$$\langle 0 | I_{\chi}^{2}(t) | 0 \rangle = \| I_{\chi}(t) | 0 \rangle \|^{2} = 0, \qquad (7)$$

 \mathbf{or}

$$I_{\gamma}(t) \mid 0 \rangle = 0. \tag{8}$$

However, it is known³ that under the stated conditions, this implies

$$(\partial/\partial t)I_{\chi}(t) = 0.$$
(9)

The same arguments apply to the other two components of \vec{I} . This completes the proof.

*Alfred Sloan Research Fellow, on leave of absence from Lyman Laboratory, Harvard University, Cambridge, Massachusetts.

¹J. C. Vander Velde, Phys. Rev. Letters <u>16</u>, 69 (1966).

²The proof below is – for the sake of brevity and clarity – sloppy rather than rigorous, and the statement of the theorem given here is not quite careful enough to form the basis of a rigorous proof. The difficulty is that the integral in Eq. (1) does not in general converge; it converges only when evaluated between quasilocal states. Therefore it does not give a direct definition of I^2 . If we define $\int_R d^3x$ as the integral over a sphere of radius R, define I^2 as

weak
$$\lim_{R \to \infty} \sum_{i=l}^{3} \int_{R} d^{3}x \, j_{0i}(\bar{\mathbf{x}}, t) \int_{R} d^{3}y \, j_{0i}(\bar{\mathbf{y}}, t),$$

and assume that this limit defines an operator with the stated properties, then we may easily construct a rigorous proof along the lines given in the text.

³S. Coleman, "The Invariance of the Vacuum is the Invariance of the World" (to be published). This is where we exploit locality and Lorentz invariance; the entire argument up to this point would be equally valid for nonlocal currents in a nonrelativistic field theory.