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the center, the period increases to more than
twice its normal value. After the off-center
oscillations begin, the period decreases rapid-
ly to less than its original value.

The apparatus is not such as to permit high-
ly quantitative description of the results, but
two conclusions seem to be justified: (l) The
conservative force is apparently associated
with currents in the film at the boundary be-
tween normal and superconducting areas.
(2) The dissipative force cannot be due to or-
dinary eddy currents since it is not observed
at 4.2'. The resistance of the film in the nor-

mal state is high enough, because of its small
thickness, to make this contribution negligible.
The force must be associated with the motion
of normal superconducting boundaries.
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In this paper we report about the anomalous
behavior that the resonant-mode infrared ab-
sorption exhibits under the application of uni-
axial or hydrostatic stress. The main feature
of the effect consists in the large shift that
the peak frequency suffers under the applica-
tion of the stress. Indeed this shift is predict-
ed to be in some cases 20 times larger than
the shift suffered by the host lattice frequen-
cies.

In the absence of any concentration effect,
it is well known' ' that the absorption peak
occurs at the frequency for which the real part
of the resonance denominator of the scatter-
ing matrix for a single imperfection vanishes.
If, in addition to the change of mass, the change
of nearest-neighbor (n.n. ) force constant is
also considered, it is an easy matter to gen-
eralize the theoretical results of previous auth-
ors'~' concerning the pure change of mass,
and the resonant frequency +z for the optical-
ly active mode turns out to be a root of the
equation

1+ eH((d )+ Ap((d )+ eAy((d ) = Q.
y r

e =&M~/M~ measures the local change in mass,
A.

—= M~A the local change in nn force constant
of central type, while n(ru), p(&u), and y((u) de- '

note the real part of Brillouin-zone summation
involving the frequencies and the polarization
vectors of the host crystal. In an ionic crystal
with rock-salt structure, ct((o), P(co), and y(&u)

turn out to be

8 (&)=N 'g(& .'-v'-2i+0+) 'e (+ lqj)
qj x

qj

xe (v I jj)cos(2maq ),x x '

g (v) =N 'Q((o 2-&u2-2icd 0+)
3 . qjqj

xe '(+ I q j) cos'(2vaq ). (2)

In the above expression, & is the circular
frequency, q the wave vector, j the branch
index, n the number of primitive cells compris-
ing the lattice, and a the lattice constant. e (+ I jj)
is the polarization vector of pisitive (+) or neg-
ative (-) ions and y =M+/M+ the host-crystal
mass ratio; the choice of the upper or lower
sign depends whether we are concerned with

positive or negative impurities.
For a fixed value of the resonant frequency,
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Eq. (1) represents a hyperbola in the (e, A. ) plane.
The hyperbola represents all the possible pairs
of ~ and ~ values for which a resonance occurs
at the considered frequency. Figure 1 shows
the hyperbolas for a KBr host lattice which
correspond to positive impurities and to a set
of frequencies uniformly distributed in the acous-
tic region.

The coefficients n(co), p(&u), and y(v) were
evaluated by using Hardy's deformation dipole
model, ' zero-temperature crystal data, ' and
a grid of 4409 points in the Brillouin zone.

From Fig. 1 it appears that the smaller the
resonance frequency, the more the hyperbolas
approach one to another. This occurs particu-
larly in the region of the (e, X) plane which cor-
responds to light substitutional impurities.
The plot in Fig. 1 accounts qualitatively for
the high sensitivity that the resonance frequen-
cy may exhibit to a variation of the change of
force constant. Indeed it appears that for e('Li+)

FIG. 1. The resonances frequency as a function of
the changes of mass. e and force constant A, ; for positive
impurities in a KBr crystal at O'K.

=0.847, a very small variation of & gives rise
to a very large change of the resonant frequen-
cy or even the disappearance of the resonance
itself.

An external stress, a strong electric field,
or a change in temperature, all are methods
to produce a variation of &. These external
perturbations affect also the lattice dynamics;
we have considered the simplest one, i.e., a
hydrostatic pressure. Use is made of the
Gruneisen approximation, i.e.,

- .' = &- .'(1-6yda/a)
s, qj qj

(3)

for all q and j. A subscript s is added to quan-
tities in stressed crystals and y is the aver-
age of the "mode-gammas. " It is easy to
show that under hydrostatic stress the absorp-
tion coefficient transforms as

where

n ((u; Yi) = (1+3yda/a)n (&o ', X '), (4)

oo'=u)(1+3y da /a), 7 '=X (1+6yda/a),

A (S„+2$,2) =—1 d(d

9daa ' (6)

and y = y+yLO-yTO-1 is the amplitude factor.
If the impurity n.n. force constant would change
under stress as much as the n.n. force constant
of the host lattice, 7 would transform as a
squared normal frequency, i.e. , &s = X(1-6yda/a);
in this case &s'= 7, and it appears from Eq. (4)
that the resonance frequency would shift as
much as the normal-mode frequencies. As a
matter of fact &s' differs from &; this accounts
for the anomalous stress effect.

For KBr the average "mode-gamma" was
estimated to be y= 2.12. The sharp resonance'
at ~z -—0.33&10"sec ' due to Li+ in KBr was
considered. In the unstressed crystal the res-
onance peak can be fitted by choosing & = -3.675
X 10" sec ' (see Fig. 1). The variation of A

due to 1'%%uo isotropic strain was evaluated on
the basis of a Born-Mayer model for the re-
pulsive potential. The correction due to the
n.n. elastic relaxation was considered also;
indeed the elastic relaxation is estimated to
be -5.4%%uo of the lattice constant. ' It was found
that ~s = -4.018&10"sec ' and A.s'= -3.508
&10"sec ', so a shift of resonance frequen-
cy of the order of 100'%%uo is predicted on the
basis of the plot in Fig. 1, against the 6%%uo

Gruneisen shift. The value of the hydrostatic
coefficient, which is here defined by'
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Table I: Hydrostatic coefficient A(S~&+2$&2) at O'K for some resonant modes.

Crystal

KBr:.Li
KBr:Ag
KCl:Ag
KI:Ag
KI:Tl
NaCl:Cu
NaCl:Ag

Resonant frequency
Q)y

(10~3 sec ~)

0.33
0.63
0.72
0.33
1.23
0.38
0.97

Average mode
gamma

'y

2.12
2.12
2.2a

2.1
2.1
2.7a
2.7a

Compressibility
K(0'K)

(10 &~ dyn-&)

6.17
6.17
5.26
7.75
7.75
3.98
3.98

Hydrostatic coefficient
A(Sg)+ 28(2)

[cm ~/(kg/mm2)]

-0.12
-0.04
-0.04
-0.06
-0.03
-0.09
-0.05

aSee Ref. 6.

where tc is compressibility and Sz~ stiffness
constants, is reported in Table I. It seems
to agree with the results(S»+ 2S») = -0.18
+ 0.03 cm '/(kg/mm') of a recent experiment
by Molt and Sievers. '

Estimations for some doped crystals are
also reported in Table I. The theoretical eval-
uation of the axial and trigonal coefficients
is in progress.
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