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The excellence of the negative muon as a test
particle for probing the electric and magnetic
fields of nuclei has been recognized' since 1949.
The problem has been to achieve adequate pre-
cision and energy resolution in the study of
the emitted x rays so information could be ob-
tained not only on the form factor of the charge
distribution, but also on the magnetic dipole
(M&) and electric quadrupole (E2) moments
as well. The recent development of a high-reso-

lution solid-state gamma-ray detector of lithi-
um-drifted germanium has brought these aims
much nearer to their realization.

It is well known that, for atomic electrons,
the magnetic dipole hyperfine-structure effects
are of approximately equal importance to that
of the electric quadrupole interaction:
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where p, y and p~ are the magnetic moments
of the nucleus and the atomic particle, respec-
tively. However, since the magnetic moment
of the muon is about 207 times smaller than
that of the electron, the magnetic hfs effects
in a muonic atom tend to be, therefore, two

ordeps of magnitude smaller than the electric
quadrupole interactions. Nevertheless, there
are special exceptions wherein the magnetic
and quadrupole hfs effects may be of the same
order of magnitude; the Bi' nucleus is one
of those favorable cases.

83Bi,",', may be considered a spherical nucleus
as it has only one proton outside of the doubly

magic core. The ground-state spin is large
(E= —',), and its magnetic moment is measured
to be 4.08 n.m. The quadrupole moment is
Qexpt=- —0.4x10 ' cm'. Because of the high
sensitivity of the muon orbit to the finite ex-
tent of the nucleus, the observed hfs should
reflect the radial distribution of the magnetic
dipole as well as the electric quadrupole mo-
ments inside the nucleus. The former effect
was first theoretically treated by Bohr and
Weisskopf' and has been known as the Bohr-
Weisskopf effect. The latter effect is usually
more pronounced in highly deformed nuclei,
such as the 74W isotopes and»U'", where a
dynamic E2 hfs, in addition to the static E2
hfs, has been observed and reported. '

Muonic x rays of Bi"' have been studied re-
cently by using Ge(Li) detectors in the muon
beam of Nevis cyclotron and have been briefly
reported. The extraction and focusing of the
muon beam to the target area is similar to that
used in previous investigations. ' The small
size of the Ge(Li) detector placed a great pre-
mium on high geometrical efficiency. For this
reason an arrangement was used in which the
muon beam, the associated counters, the tar-
get material in which the muons stopped and
the x rays were produced, and the Ge(Li) de-
tectors were all in a straight line. To minimize
the background contribution of electrons in the
beam, as well as the bremsstrahlung accom-
panying them, two Cherenkov counters, one
of water and the other of Lucite, were added
to the existing counter telescope system. The
Ge(Li) detectors' were prepared in our labora-
tories. Two detectors of sensitive volume 7
cm'x 0.9 cm were mounted side by side on a
common liquid-nitrogen-cooled support and
in a common vacuum envelope (3.5 cmx7. 3
cmx15. 0 cm). The over-all energy resolution

for y rays is 3.8 keV at 1 MeV, 5.5 keV between
2 and 3 MeV, and 8 keV for 6 MeV. To fully
utilize the high resolution of the detector, four
multichannel analyzers of 400 to 1600 channels
were employed to record the data simultane-
ously. To examine a specific region of the spec-
trum, a linear window amplifier was used.

The data processing and analyzing were car-
ried out using a PDP4 computer. Figures 1(a)
and 1(b) show the regions of K and l. x rays
Qf Bl . The 6.131-MeV y ray7 from Nle was
shown in Fig. 1(a) for the purpose of compar-
ing line shapes in that energy region. For this
purpose, we recorded the N' y ray with the
cyclotron beam on as well as with cyclotron
beam off —also summed over several runs for
an extended period. Owing to the high stability
of the detector system, the apparent linewidth
for an extended run was 8-9 keV (full width at
half-maximum). The observed Ka, (2p„,- 1s»)
line shows a linewidth (full width at half-max-
imum = 13.5 keV) which is a clear evidence of
broadening over the natural linewidth. Since
no electric quadrupole interaction is involved
in the 2p„,- ls„,transitions, the observed
broadening must be attributed to the magnetic
hfs effects. The lifetime of the 2p state in Bi"'
has been estimated' to be -10 "sec; its con-
tribution to the linewidth is, therefore, only
-1 keV. The Kn, (2p», - ls„,) line is much broad-
er than the 1|.n, line, and shows a large dip in
the middle of the line (full width at half-maxi-
mum = 21+ 1 keV). The two I. x rays in Fig. 1(b)
also show appreciable broadening. The occur-
rence of a nuclear y ray (2.6145 MeV) from
excited Pb'"" (Bi"'+p, -Pb"' + v+n) between
them provides a constant monitoring source
for the natural line shape. The broadening of
this nuclear y line during the long run was less
than 0.5 keV.

In calculating the hyperfine splitting in Bi"9
due to both M1 and F.2 effects, Le Bellac' as-
sumed three different nuclear models: (1) point-
nucleus model, which is the simplest, but prob-
ably most unrealistic (Ai'); (2) finite-nucleus
model, but using single-particle shell-model
wave functions (A,o); and (3) single-particle
model with configuration mixing (Ai). This
was used because the single-particle shell mod-
el failed to explain the observed magnetic mo-
ment. The displacement of the state )I, J, F)
(F =I+J), is given by

[F(F + 1)—I(E+ 1)-J(J+1)]
F Ml 21J "1
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where A, is called the hfs constant and is mod-
el dependent. The values of A, calculated for
the above three models are listed in Table I.

It is interesting to see that the finite nuclear
size effect reduces the value of A, by nearly
50'%%uo
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FIG. 1. (a) Spectrum of the K x rays of muonic Bi ~. To show the broadening and splitting observed in the K
x-ray doublet, the linewidth of 6.130 MeV of 0 8 is inserted to the right for comparison. (b) Spectrum of the I
x rays showing full-energy as well as double-escape peaks. The narrow line between the I x rays is a de-excita-
tion y ray from the reaction

209+p Pb208*+n+ v
p,

Pb208+')/(2. 6 145 MeV).
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g hfs constant to A2=-3.83 which results in

single-particle wave functions. Although the
single-particle wave functions yield a calcu-
lated Q value of -0.44x 10 '4 cm' which is com-
parable to the measured Q = -0.40x 10 '4

expt
cm', the Qexpt is actually derived from mea-
surements with atomic electrons so it is rather
insensitive to the finite size effect. In order to
take into account the volume effect of A„more
sophisticated calculations are needed. However,
it is interesting to see that our experimental
results fit much better if the hfs constant for
the 82 effect (A, ) is equal to -3.8 keV. Fur-
thermore, in the calculation of the relative
intensities, the level densities are assumed
to be proportional to the statistical factors.
In view of the intensity anomalies4' observed
in the K~ doublets,

I(@„,- ls„,)3/2 1/2
1 38 0 1

1/2 1/2

and L, multiplets,

I(M„,- 2P„,)5/2 3/2 l 5P~ P
1/2.

the validity of statistical assumptions may be

questioned.
The energies of the higher order x rays and

their relative intensities (IIf.'II .'IM.'I~) have
also been measured. The interpretation of the
charge distribution of the Bi'" nu l ' ti nuc eus in terms
of the measured x-ray energies has been inves-
tigated. A detailed discussion of our results
on Bi'"' muonic atoms will be submitted else-
where.

We are most indebted to Mr. J. Hahn, W. Pat-
ton, and Professor L. Lidofsky for their in-
valuable help. We also wish to thank Dr. M.
Le Bellac for his kind communication.

*Work partially supported by the U. S. Atomic Energy
Commission and the U. S. Office of Naval Research

)Presently at Lawrence Radiation Laboratory, Berke-
ley, California.

fPresently at the Enrico Fermi Institute for Nuclear
Studies, University of Chicago, Chicago, Illinois.

50n leave from II Physikalisches Institut, University
of Heidelberg, Germany.

1J. A. %heeler, Rev. Mod. Phys. 21, 133 (1949).
2A. Bohr and V. F. Weisskopf, Phys. Rev. 77, 94

(1950).
3D . H1tl1n, T. T. Bardin, E. Macagno, R. C. Barrett,



VOLUME 16, NUMBER 11 PHYSICAL REVIEW LETTERS 14 MARCH 1/66

R. C. Cohen, S. Devons, C. Nissim-Sabat, J. Rainwater
K. Runge, and C. S. Wu, Bull. Am. Phys. Soc. 11, 130
(1966); and to be published; and H. L. Acker, et al. ,
Phys. Letters 14, 317 (1965).

4T. T. Bardin, E. Macagno, R. C. Barrett, R. C.
Cohen, S. Devons, D. Hitlin, C. Nissim-Sabat, J. Rain-
water, K. Runge, and C. S. Wu, Bull. Am. Phys. Soc.
11, 130 (1966); and in Proceedings of the International
Conference on Elementary Particle and Nuclear Struc-
ture, Brussels, 13-16 September 1965 (unpublished).

W. Frati and J. Rainwater, Phys. Rev. 28, 2360
(1962); H. L. Anderson, C. K. Hargrove, E. P. Hincks,
and A. J. Tavendale, in Proceedings of the International
Conference on High-Energy Physics, Dubna, 1964 (to
be published); H. L. Acker, G. Backenstoss, C. Daum,
J. C. Sens, and S. A. De Wit, Phys. Letters 14, 317
(1965).

6K. Runge and C. S. Wu, Columbia University Report
No. NYO-GEN-72-28 (PNPL), 1964-1965 (unpublished),
pp. 74-77.

C. P. Brown and I. Michael, Phys. Rev. 134, B133
(1964). We also obtained a value of 6130+2 keV for the
N 6 y line by extrapolating from known y-ray energies.

W. B. Rolnick, Phys. Rev. 132, 1110 (1963).
BM. Le Bellac, Nucl. Phys. 40, 645 (1963).
A y test was applied to all three models. The y is

defined as

N (y y' )
'21~ z Pz

X ~~ (y )$/2i=1 i

where Fan=actual data in the ith channel, Fbi=predicted
value (or theoretical value) in the ith channel, and N
=total number of channels used in the fitting. In our
case %=38, and the number of parameters=5, so that
the number of degrees of freedom=38 —5=33. The g2

values are 1.547, 1.195, and 1.114 for the point nucleus,
the single-particle model, and the configuration-mixing
model, respectively.

FINE STRUCTURE AND ISOTOPE SHIFT IN MUONIC LEAD*

H. L. Anderson and R. J. MeKee

Enrico Fermi Institute for Nuclear Studies, University of Chicago, Chicago, Illinois

and

C. K. Hargrove and E. P. Hincksg

Division of Pure Physics, National Research Council of Canada, Ottawa, Canada
(Received 4 February 1966)

The use of high-resolution lithium-drift ger-
manium detectors' has made it possible to
resolve clearly the fine structure in the K, I,
and M x-ray lines of the heavy muonic atoms. ' 5

We report here our measurements and analyses
of these lines in the case of lead. Comparison
of two lead samples of different isotopic com-
position has made apparent an isotope shift
in the 2P-1s transitions.

The experiment was carried out using the
muon channel of the Chicago synchrocyelotron.
The Ge detector had an area of 5.2 cm' and
an active thickness of 8 mm. It was at 90' to
the beam and shielded from it. It viewed a
45' target 5 in. && 5 in. & 8 g/cm thick in which
normally 2&&10 muons per second were stopped.
A conventional array of coincidence and anti-
eoincidence scintillation counters signalled the
stopping of a muon in the target. A fast coin-
cidence (27 =25 nsec) was required between
one of these telescope counter pulses and any
Ge pulse in the energy range 400-8000 keV.
The total rate of x-ray events in this range

was 20 per second. The pulse-height analysis
system, fed from three biased amplifiers,
consisted of a pair of Nuclear Data 10-bit an-
alog-to-digital converters (ADC's) whose out-
put was accumulated in the Maniac III computer, '
and a Victoreen 800-channel pulse-height an-
alyzer. This latter had also been used in our
previous run' and helped to intercalibrate the
two.

Two pulsers were coupled in parallel to the
Ge diode at the preamplifier input. The first,
a precision mercury pulser monitored by a
differential voltmeter, was used frequently for
a detailed voltage calibration over the whole
range of the analyzers. The second, a moni-
tor pulser, fed tagged pulses of four different
amplitudes to the computer once a second to
provide a continuing cheek of the gain and bias
changes in the system. The information thus
provided made it possible to accumulate data
eorreeted for drifts over long periods of time.

For energy calibration we used a number of
known gamma-ray sources: the single and


