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In this Letter we summarize an experimen-
tal investigation of the hyperfine structure of
muonic Bi, conducted with particular empha-
sis on the magnetic effect.

The hfs of muonic atoms differs qualitative-
ly, in certain points, from that of electronic
(ordinary) atoms. Some of these points are
as follows: (1) The magnetic (Ml) interaction
is in general much smaller than the electric
quadrupole (E 2) interaction. (2) For deform-
able nuclei, the hfs (E2) and fine-structure
splittings can become comparable to each oth-
er, and to nuclear excitation energies; the us-
ual static description no longer applies then. '
(3) For both hf interactions, the effects of fi-
nite source size are larger (reduction of about
50% for high Z), and rather sensitive to the
details of the source distributions (Ml and E2
densities). (4) All muonic atoms are hydro-
genlike, and the muon wave functions can be
computed reliably (once the scalar nuclear charge
distribution is known).

The uncertainties in electronic wave functions
are such that ordinary hf spectroscopy has been
superseded as a source of nuclear M1 moments
p, l, and yields only moderately accurate values
of Q, the E2 moment. Effects of finite source
size' can be studied reliably only through the
comparison of isotopes, ' and for M1 moments
only.

In view of (3) and (4), muonic spectroscopy
offers, at least theoretically, the possibility
of (a) investigating the effects of finite M1 dis-
tributions for individual isotopes, and (b) of
determining E 2 moments with fair accuracy
(limited primarily by the uncertainties in E 2

distribution!) by an independent technique. Ex-
perimentally, the Ge(Li) detector, whose use
in muonic x-ray spectroscopy was pioneered
by Anderson et al. ,

' brings (b) into the realm
of feasibility. Investigations of the type (a) how-

ever require exceptional precautions even with
the highest resolution Ge(Li) detectors —because
of point (1) above.

Simple estimates show that Bi'" (Z = 83, I
p~ = 4.04 n. m. , Q= —0.4) is probably the

most suitable nucleus for a first study of the
M1 hf effects in a muonic atom. '~' Although

more accurate predictions of the relevant hf

splittings are given in Table I, we first pre-
sent these estimates for clarity's sake.

The 2P„,—Is,&, transition (Ko.,) is split by
the M1 interaction only. The splitting is larg-
est in the ground state, and is given (for a point
dipole) by the Fermi formula

&W, (ls,&2)
—=A, [(2I+ 1)/I]

= («/3)P(0)P0'PI(~/M)H2I+ I)/I] (»)
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Table I. Parameters used to calculate the muonic
x-ray spectra from Bi

M1 and E 2 hfs. The ratio of the hf constants
is roughly given by

State

1s
~

@ 1/2

~3/2
3d3(2

3dg)2

A(

1.6b (3 2)
0.8 (1.6)
0.8 (1.6)

0.2
0.3'

Constants a

(kev)

~ ~ ~

-4.0d [-4.5]
-0.6
—0.7d

Here, ('(0) comes from the "contact" interac-
tion between the moments; to allow for the fi-
nite extension of the nuclear M1 moment, one
has to average (2(r)&(r —R) over its distribution
M(B). Now the corresponding average (g'(x))
over the nuclear charge distribution p(R) is
familiar from muon capture (which is also a,

contact interaction!), viz. (('(r)) == (Zeff'/Z)(1/
wa0'); Zeff' is tabulated. ' Thus one has, ' as-
suming that M(R) has the same isotropic dis-
tribution a,s p(R), instead of A,P»«above,

A =(-',)(Z /Z)p, (m/M)a mc . (lb)

This assumption is, however, only approximate-
ly valid. The hf interaction depends, as Bohr
and Weisskopf (B-W)' first pointed out, on the
detailed structure of M(R); later Winston' and
LeBellac' discussed muonic hfs specifically.
We shall reserve the term "B-W effect" for
corrections M to the trivial volume effect (M
-p)

Numerically, (1b) predicts for Bi &W(ls, &,)
=3.5 keV. Although one also expects some split-
ting in the 2p, &, state, it is already clear that
experimentally (with 8- to 12-keV resolution}
the hfs will lead merely to a broadening of the
Bi Kn, "line. " The same conclusion holds for
the LP, (3d», —2P,&,) transition. "

The Ko., transition (2P„,-1s,&,) involves both

See LeBellac (Ref. 9) for a definition of A& and A&.

Values in parentheses are for a point dipole.
As given in Hef. 9. T. T. Bardin et al. , Ref. 5, also

found these values to give satisfactory agreement with
experiment.

cScaled from the p-state values in Ref. 9.
dComputed, with Q = —0.46 b, using a 6(&-B) distribu-

tion for p2 [S. Raboy, C. C. Trail, J. A. Bjorkland,
R. D. Ehrlich, R. J. Powers, and V. L. Telegdi, Nucl.
Phys. 73, 353 (1965)]. The value in brackets fits the
K data better. Ref. 9 gave A2(2P3/2) —2.7 keV.

A /A =4(p /Q)(K/mc)'(m/M) = -0.17 for Bi. (2)

Thus, although Q is small, the Kn, line will
be strongly affected by the E2 hfs.

The quantitative study of phenomena on the
basis of a change in linewidth or line shape
poses delicate experimental problems. Past
experience in this laboratory convinced us that
it is almost impossible to record "static" com-
parison lines (say, y rays from radioactive
sources) under exactly the same conditions as
beam-induced transitions (muonic x rays or
capture y's). Only the comparison of simulta-
neously recorded events of this latter type ap-
pears reliable. We therefore used for refer-
ence (a) in the K series, the muonic x rays
from a Pb'" target, "and (b) in the L series,
a 2.615-MeV transition in Pb" that follows

p capture in Bi" ." Adopting a method due
to Cohen et al. ,

"we used a detector that viewed
several targets (here Pb"' and Bi) at once;
stops in a given target were labeled electron-
ically. For each photon event satisfying the
logic criteria, '~ both its pulse height and its
timing (with respect to the stopped muon) were
measured in digital form. A 100-Mc/sec "dig-
itron'"' was used for the timing. The two-pa-
rameter spectra, together with the target "la-
bels, "were stored on magnetic tape. This pro-
cedure enabled us to record the pulse-height
distributions of prompt events, accidentals,
and capture y rays simultaneously. An estimate
of the "prompt" background (presumably due
to a residual e contamination of the "muon"
beam) was obtained using comparison targets
(Ta for the K series, Ti for the L series) which
could not give appreciable amounts of muonic
x rays in the energy intervals of interest. To
ensure against drifts, the linear amplification
system was kept at constant temperature (+0.2'C).
Although our experiments did not aim primar-
ily at accurate absolute energy determinations,
the runs were interspersed with pulser and
source (ThC", 0"*)calibrations.

Figure 1 shows the experimental points in
the Kn doublet regions of Bi (top) and Pb"'
(bottom); flat contributions from accidentals,
capture y rays, and "prompt" background were
subtracted before plotting. The curves drawn
through the Pb "data represent the detector
response under real running conditions; the
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FIG. 1. Comparison of muonic K x rays in Bi ~ and Pb2 . The line spectra shown at the base line are the hfs
patterns calculated with the parameters for an extended dipole listed in Table I. The solid line represents the the-
oretical predictions normalized in tbe regions of fit and obtained by folding the observed Pb ~ Ke& line shape into
these spectra. The dashed curve in the Bi K62 region is the expected line shape for a point magnetic dipole. In the
K+2 x-ray region tbe dashed curve gives a y of 45.6 for 25 degrees of freedom while the solid line (extended dipole)
gives a X of 30.2. The uncertainties in the indicated y energies are less than 2 keV. The absolute energies quoted
are referenced to the 6.131-MeV 0~6* line.

Pb Kn, line shape shown was used to compute
the "theoretical" line shapes for the two Bi
transitions, adopting the hf constants given
in Table l. The width of the Bi Ko.', line (pure
Ml hfs) rules out the point-dipole model'6; the
experiment is not sufficiently sensitive to ver-
ify the B-% effect proper. The Bi K~, line
shape agrees with the anticipated composite
effect of M1 and E 2 hfs, allowing for a volume
effect in the latter as well. The energies of
the four K transitions shown in Fig. 1 agree
well with recent measurements. Our data al-
so confirm the anomalous Ko. ,/Ko. , intensity

ratio (1.42+0. 10) for Bi. For Pb the ratio is
2.02+ 0.15.

Figure 2 (top) shows the experimental points
near the I. lines of Bi, observed as "prompt"
radiations; the corrections mentioned in con-
nection with Fig. 1 were applied here also.
Fig. 2 (bottom) shows the prompt (a) and the
delayed (b) events in an energy range between
these two lines. The 2.615-keg capture y ray
from Pb"' emerges clearly in the delayed spec-
trum. The "bump" at 1616 keg in the spectrum
(2) is tentatively attributed to a 6P -Bs transi-
tion, but we remark that Pb La spectra observed
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FIG. 2. (Top) Muonic I, x-ray spectrum for Bi 8. The line spectra drawn at the base line are the hfs patterns
calculated with the parameters for an extended dipole listed in Table I. The solid line represents the theoretical
predictions normalized in the region of fit and obtained by folding in the observed line shape of the 2.615-MeV y
ray from Pb . (Bottom) Delayed (a) and prompt (b) spectra in the energy region between the two Bi I lines. The
time window (with respect to the muon stop) is -15 to +25 nsec for the "prompt" events and +35 to + 145 nsec for
the delayed events. Here again the uncertainties in the indicated y energies are less than 2 keV.

here (not given) show no corresponding "bump. "
The "theoretical" Bi L lines, computed using
the line shape in Fig. 2(b) and the constants
in Table I, are seen to agree well with experi-
ment, although the best fit requires a, slightly
(10/0) different%, from that used for matching
the Kn, line shape. Again the absolute ener-
gies and the Ln, /Lp, intensity ratio (1.74+ 0.15)
are in agreement with recent determinations. '
Our value for the Ln, /LP, intensity ratio has
been corrected for the energy dependence of

(a) the pair-production cross section in german-
ium (+17'), (b) the self-absorption in the tar-
get (+1/o), and (c) the probability for escape
of secondary electrons (-1Vo). It is not clear

whether previously reported values for this
ratio include this correction. (The correction
for the Kn x rays is only 1%.)

In view of the anomalous intensity ratio of
the Kn doublet members (and the theoretical
arguments'7 invoked to explain it), one should

perhaps be warned against using straightfor-
ward static theory to analyze their hfs. Con-
versely, the reasonable agreement between
such an analysis and experiment might be used
to rule out certain explanations.
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National Laboratory) for untiring cooperation
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The excellence of the negative muon as a test
particle for probing the electric and magnetic
fields of nuclei has been recognized' since 1949.
The problem has been to achieve adequate pre-
cision and energy resolution in the study of
the emitted x rays so information could be ob-
tained not only on the form factor of the charge
distribution, but also on the magnetic dipole
(M&) and electric quadrupole (E2) moments
as well. The recent development of a high-reso-

lution solid-state gamma-ray detector of lithi-
um-drifted germanium has brought these aims
much nearer to their realization.

It is well known that, for atomic electrons,
the magnetic dipole hyperfine-structure effects
are of approximately equal importance to that
of the electric quadrupole interaction:
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