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J. Chem. Phys. 42, 309 (1965).
~~Assuming a diffusion-controlled process one may

write K = (3)vzo. 0 = 2,5 x 10 cm is the geometric
cross section of an anthracene molecule. The factor
3 is needed because only encounters where the total
spin is 2 (atomic units) can lead to triplet destruction.
z, which we may assume to be 8, is the number of con-

figurstions of two neighboring molecules (one occupied
by a triplet exciton, the other by an electron) which
allow reaction. Insertion yields a thermal electron
velocity e = 1 x 106 cm sec ~. This agrees well with
the theoretical value. ~

~ W. Helfrich and F. R. Lipsett, J. Chem. Phys. 43,
4368 (1965).
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It has been clear for some time that the ap-
plication of the Hartree-Fock method to the
problems of nuclear structure would provide
a natural foundation for the discussion of most
nuclear properties. The fact that two-body
forces which fit the scattering data are strong-
ly repulsive at short distances has made a di-
rect application of the Hartree-Fock method
impossible and thus various groups have tried
to construct velocity-dependent or nonlocal
potentials for which the Hartree-Fock method
may be applied. These potentials have only
had a qualitative success when applied to nu-

clear structure problems. Also, calculations
using reaction matrices taken from infinite
nuclear matter calculations have had rather
limited success and are also computationally

difficult.
Recently, investigations of the effective in-

teraction in finite nuclei using realistic forces
have been performed using a unitary model-
operator approach. ' Using this approach we,
in this paper, try to provide a theoretical foun-
dation for the application of effective interac-
tion in the nuclear Hartree-Fock calculations.
Two important advantages of this method over
a reaction-matrix approach are (1) the funda-
mentally Hermitian character of the effective
Hamiltonian generated and (2) the absence of
rearrangement terms in the calculational pro-
cedure.

It has been shown previously' that the appli-
cation of a unitary operator, el, to a set of
uncorrelated basis states leads to an effective
Hamiltonian of the form

H =e He =5~t a a +s5~a a (aP le (tl+t 2+v ) e -(tl+t2) ly5)a a + ~ ~ ~ .-iS iS -&S lS
1 2 12 1 2 5y

The highest order terms in the cluster expan-
sion implied in Eq. (1) can be shown to be quite
small if the correlations induced by e' are
of sufficiently short range. Indeed, the require-
ment of convergence of the cluster expansion

leads directly to the introduction of a general-
ized separation method' approach for defining
the short-range correlation structure.

It is useful at this point to add the following
expression' to the matrix element in Eq. (1):

(nP l e (U, + U, )e —(U, + U, ) I y5).

It is easily seen that for the short-range cor-
relations we define below, the added term makes

a negligibly small contribution to the energy.
We require the single-particle potentials U,
and U, to have the harmonic-oscillator form:
U» = ~krj, U2 = 2kr2 .

We introduce the solutions of the following
problem:
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F IG. 1. Diagrammatic representation of the effective interaction.

we may rewrite (1) as

H=5~ t a a C C
Q Pl Pl Q (XPlg

+F~ a a aaC C C Cay a y an, n, yn, n4

x (4 I v I 4 ),
l

n~n2 12 n3n4
' (6)

or

Si Pt a ~a
Pl+2 Pl) P22

+-,'Qa '4 ~a a (e Iv Iy ),
+3 54 8$Pl2 12 n4Pg3

where all quantities now refer to the harmonic-
oscillator basis. In Eqs. (3) we neglect the
coupling between states of different l that arises
due to the tensor force, i.e. , eiS induces only
central correlations. Thus Eq. (6) should be
mritten more generally as

si = Qt a 1'a +-,'Pa &a &a a
nin2 nl n2

2
nl n2 n3 n4

x(cp Iv12 +v 14' ),
l OD

n,n2 12 7 Pg Pg,
'
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where the subscripts n, and n2 refer to the quan-
tities (n, l, j,m) necessary to specify the orbi-
tals for particle motion in a harmonic-oscilla-
tor potential. Here g» is the short-range
part of g», defined so as to give no energy shift
in 4„z relative to y„„.1 2 2

Now we define the operator e» in the space
of tmo-body wave functions by the equation

iS
@nn =+nn22 gg

for all n~ and n&.

We note that this definition is independent
of any self-consistency problem.

U we expand the orbitals in (1) in a harmonic-
oscillator basis, i,e. ,

where gr D refers to that part of the complete
tensor force nondiagonal in the orbital angular
momentum. The Hamiltonian defined in Eq. (7)
can now be readily used for the Hartree-Fock
calculations. However, it must be remembered
that there are large second-order contributions
from the tensor force.

We, therefore, suggest that this effect can
be taken into account by slightly modifying the
Hamiltonian (7) as

a=at a ta +-,'Qa ga ga a (e l[v
n~n n n nj n n3 n4 n~n 12

+v +v (Q/e)v ] le ),648 3
(8)

where Q is the Pauli-principle operator that
projects out of the space in which we mill ex-
pand our orbitals. Diagramatically, the effec-
tive interaction appears as in Fig. 1. In this
figure a double line is an indication that me
are using correlated (central correlations only)
basis functions in the evaluation of the matrix
elements. In general, the calculations for the
second-order terms in vy are difficult and
one could use the prescription of Kuo and Brown'
in the treatment of the intermediate states.

Hartree-Fock calculations using Eq. (8) are
under may. However, the results we obtained
with each orbital approximated by a single har-
monic-oscillator function are reported below,

In Table I we present the results of our pre-
liminary calculation. We have used an oscil-
lator size parameter b =1.76 [b = (tt/M&u)'"].
The second-order terms have been calculated
orily for the 'S, state where they are known to
make a large contribution,

The matrix elements are given for the various
states of relative motion which contribute after
one makes the Moshinsky transformation. The
weight factors necessary for the calculation
of the potential energy are taken from MacKel-
lar's thesis. ' We obtain a binding energy of
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Table I. Potential energy of 0' for Yale potential.

Matrix element
First Second
order order Weight

State nl +I {MeV) (Me V) factor

Contribution
to the potential

energy
(Mev)

00
'S, 00
S 00
3si 00
Si 10
Sp QQ

'S, 00
Sp QQ

Sp 00
Sp 10
I' 01

3J'p 01
Pi 01

3P2 01
Dp 02

'D, 02
'D, 02
'D, 02

00 -2.02
01 -2.02
02 -2.02
10 -2.02
00 -0.66
00 -8.03
01 -8.03
02 -8.03
10 -8.03
00 -7.24
00 4.86
00 -1.63
00 2.70
00 -0.84
00 -0.50
00 1.08
00 -2.01
00 0.07

-6,98
—6 ~ 74
—6.53
-6.57
-6.97

~ ~ ~

3 -27.0
9 —78.8

15/2 —64.1
-12.9

2 -11.4
3 -24.1
9 72 03

15/2 -60.2
—12.0

2 —10.8
6 +24.2
6 -9.8

18 48.6
30 -25.2

15/2 -3.8
1.6

2
5 -5,0

0.2
Total = -337.8

about 6.5 MeV per particle after correcting
for the Coulomb energy and the center-of-mass

motion. Results of Hartree- Fock calculations
using the harmonic-oscillator basis will be re-
ported shortly as well as further calculational
details. We want to emphasize at this stage
that in the framework of our theory we have
already obtained reasonable values for the bind-
ing energy, spin-orbit splittings, and the P-
shell effective interaction.

We are grateful to Professor F. Villars for
stimulating discussions and comments during
this work and to M. Tomaselli for preliminary
calculations of the second-order terms,
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Dicke et al. ' have suggested that the universe

may be filled with black-body radiation which
originated at a time when the matter and radi-
ation were in a hot, highly contracted, state
—the primordial fireball. As the universe ex-
panded, the cosmological red shift would have
cooled the cosmic black-body radiation to the
extent that one should now look for it in the
microwave band. Concurrent with this sugges-
tion, Penzias and Wilson' reported the discov-
ery of an excess background radiation at a, wave-
length of 7.35 cm. The measurement of the
spectrum of this new microwave background
provides a severe test of the cosmic black-body-
radiation hypothesis. This Letter reports a
measurement of the microwave background at
a wavelength of 3.2 cm; the flux found is that

which would be emitted by a black body at 3.0
+0.5 K. A more complete description of the
experiment will appear elsewhere.

Figure 1 shows a schematic diagram of the
instrument. It is a Dicke-type radiometer'
in which the receiver input is periodically switched
between a horn antenna and a reference source
(cold load). The output of the receiver at the
switching frequency is synchronously detect-
ed and recorded. The record is a measure
of the difference between the temperature of
the reference source and the apparent temper-
ature of the radiation collected by the antenna.
The horn antenna is shielded to exclude radi-
ation from the ground and has a main lobe half-
angle (10 dB down) of 10'. The cold-load ter-
mination is immersed in liquid helium to es-
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