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It is the purpose of this Letter (a) to note
first the essential role of the above assump-
tions in proofs of the Pomeranchuk theorem;
(b) to observe that if one considers only for-
ward scattering there is no obvious reason
why (2) should be valid except when y(E) is
chosen to increase so fast that the Froissart
bound' is violated; (c) to note that within cer-
tain limits on the rate of change of the total
cross sections o'~(E) and o (E), the assump-
tion (2) can be replaced by unitarity.

The full generality imposed by possible os-
cillations might obscure my main points so
I will, in this Letter, illustrate them by assum-
ing simple functions only. I consider first the
proof of the Pomeranchuk theorem from (1)
and (2), together with analyticity, crossing,

Pomeranchuk' suggested in 1956 that total
cross sections for particle-particle and for
particle-antiparticle scattering become equal
in the limit of high energy. There have since
been a number of proofs of the Pomeranchuk
theorem and its generalizations. All these
proofs make assumptions about analyticity,
crossing symmetry, and temperedness, which
have to a large extent been established from
the axioms of quantum field theory. In addition,
two assumptions are made which have not been
shown to have the same support from axiomat-
ic field theory. These two additional assump-
tions have been stated in many different ways
depending on which generalization or what de-
gree of rigor the author required.

(1) The first extra assumption limits the rate
of change of the difference between particle
and antiparticle cross sections. In a typical
example,

& (E) & (E)=C-p(E—)

is assumed to change no faster than a power
of a logarithm of the laboratory energy E.

(2) The second additional assumption limits
the rate of change of the modulus of the differ-
ence between the corresponding amplitudes.
For example, it is assumed that

and temperedness. The amplitude

Z(E) = lF+(E) I" (E-)l/-P' u')"-'

satisfies the condition'~'

g(E + i0) =g(-E + i0).

Using temperedness and analyticity, it is pos-
sible to establish conditions on the rate of
change of the real part of g(E) when its imag-
inary part is given. Thus from analytic func-
tion theory ~' if as E -~

then

lm4 (E)~-to+(E)-o-(E))-~(I~),

where

Re4(E))- -C'(I~)

A lower bound on o(elastic) can be derived by
using temperedness in E together with holomor-
phy in t for cos6I inside the largest ellipse com-

~/ ( ~+1).

The conclusion (6) contradicts assumption (2)
unless C =0. This proves the theorem.

We see that the proof involves the use of an
assumption (2) which precludes the rate of
growth of the real part of g(E) that is a conse-
quence of analytic function theory when its im-
aginary part behaves as assumed. This use
of an assumption of the type (2) is a general
feature of all existing proofs of the Pomeranchuk
theorem, ' ' and although its presence is some-
times clandestine it is normally overt. It is
therefore of great importance to analyze the
validity or justification of the assumption (2).
In our example it is equivalent to the assump-
tion that the amplitudes F+(E,) and F (E) should
not become dominantly real at high energies.
Although this has been suggested to be a "good"
physical assumption, "it cannot be justified
in general, and should only be regarded as a
physical assumption when it can be confirmed
by unitarity or some other physical condition.

Unitarity requires that

o~(total) ~ o~(elastic).
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patible with perturbation theory, a.nd using
analyticity and crossing in E." Temperedness
in F. and holomorphy in t establish that no more
than L terms contribute to the partial wave
series for large E,'

v (elastic) &

0 F (E t) 2

odt ReF+(E, t) '
(10)

F,(E, t) =Z(2t+1)ft(E)pt(1+ t/E),
0

where ft(E) is negligible unless l &L where

L' -E (lnE )'

It is possible from this, using unitarity, to
bound not only F~(E, 0) giving the Froissart
bound, but also to bound every derivative of
F~(E, t) at t =0, if E is large enough. " In par-
ticular, one can show that ImF~(E, t) cannot
decrease (as t goes negative into the physical
region) faster than c, ImF(E, 0)t(lnE)'. Using
crossing symmetry in E, a similar result can
be shown to be true for [ReF+(E, t) + ReF (E, t)]
and hence for ReF~(E, t)

In order to prove the Pomeranchuk theorem,
we assume that either or both 0+ and 0 behave
like C+(InE) for large E, and their difference
(5) has C4: 0. From (6) the real part of the dif-
ference F+-E exceeds the imaginary part
by a factor lnE. It follows from C+ 0 that the
larger of I ReF+(E, 0) I will exceed the corres-
ponding ImF~(E, 0) also by a factor lnE. We
can use this result plus the bound on the rate
of change of ReF+(E, t) to give a lower bound
on o'+(elastic), using

the form

[o,(E)/o (E)]-1asE--, (13)

if a+ or v behaves like (lnE)p with p &0.
It is unfortunate that this does not include

the case of constant cross sections. The lat-
ter can, however, be included if an addition-
al assumption is made about the rate of change
of the amplitude in a nonforward direction.
If we make the assumption that for small t in
It l & t„

F(E, t)-F(E, 0) e xpg(E)t), (14)

It is a,iso possible to obtain a bound on the
rate of change of the difference between par-
ticle and antiparticle total cross sections.
For example, if (14) holds, and

o~- (lnE), -1&p - 1, (16)

theny(E) & C'lnE, if F(E, to) is tempered. This
form cannot hold for large t since it would give
too fast a rate of decrease with l of partial
wave amplitudes, but it agrees very well with
experiment for small ~. With the extra physi-
cal assumption (14), the inequality (ll) gives
the stronger result that C =0 unless m- —1.
Using a generalized form of Leader's method, "
one can also use assumption (14) to improve
on the Froissart bound by one power of lnE
to give the Froissart-Martin bound 0' ~ lnE.
Thus unitarity with ana. lyticity and crossing
show that the Pomeranchuk theorem follows
from (14) when

-1+&
lnE & o'(tota. l) & (lnE), e & 0.

where to is a constant less than the distance
from t = 0 to the nearest singularity of F~(E, t).
We now use unitarity in the form

(o+-o-)-(I~), ~ &p,
Q'

then we can deduce from (6) and (11) that

p & 2q + 1.

(17)

o (total) = ' - v (elastic).ImFy(E, 0)

(lnE ) & C'(lnE ) /(lnE )

which gives C =0 unless m ~ Q.

This proves the Pomeranchuk theorem in

40

(12)

We use the larger of I ReF~(E, 0) I in (10) since
this is dominated by I ReF+(E, 0)-ReF (E, 0) I.

Then, on substituting (lnE)~ for cr~, and
C(lnE) + for ReF+(E, 0), we deduce from
(11) that

For example, if the total cross sections tend
to constant values, their difference must de-
crease at least as fast as 1/(lnE)"'. Assum-
ing isospin invariance, this means that the
charge-exchange cross sections must decrease
at the same rate.

A more general discussion of the Pomeran-
chuk theorem will be published elsewhere.
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Two peaks in the p'~+ effective-mass distri-
bution in the region between 1.0 and 1.4 BeV
have recently been reported. ' These two mass
peaks, which have been named the A, and A,
mesons, have been observed in n-p reactions
involving four charged particles in the final
state. Several theoretical interpretations' '
of the A, results have attributed this peak to
the kinematic features of the m-P reaction.

The purpose of this paper is to report the
results of a study of the p m system in the
final state of the reaction w +P-m +n +m +P
at 6 BeV/c. These results show (a) no peak
in the A, region when background events involv-
ing N*(1240) production are removed, and

(b) that the events in the p m mass region be-
tween 1.0 and 1.2 BeV are consistent with peri-
pheral production of the p via a one-pion-ex-
change model. In contrast to the results for
the A„ the A, meson is clearly evident and
is not associated with the above-mentioned type
of po production. The A, meson is observed
at a mass of 1290~ 10 MeV with a full width
at half-maximum, I", of 70+10 MeV. The re-
sults of a spin-parity analysis for events in
theA, region favor 8 =2 (p wave) or 1+ (s
wave).

Approximately 4500 four-pronged events ob-

tained from the Brookhaven National Labora-
tory 80-inch liquid-hydrogen bubble chamber
were scanned and measured. Using track den-
sity and g' probability selection criteria, 691
of these events were fitted to the four-constraint
m m n+P final state.

One feature of this final state at this energy
is that more than 90/q of the events involved
a n+v effective mass M(z m ) in the p' region
or a n~P effective mass M(m~P) in the N*(1240)
region. The M(~+P), M(w P), and M(~+a )
distributions are shown in Figs. 1(a), 1(b),
and 1(c). Strong N*++ formation is evident in
the M(m+p) plot, with approximately 35% of
the combinations falling in the region between
1110 and 1370 MeV. The M(z p) plot indicates
that the N* production is less strong with a
much larger background present. This back-
ground is influenced, in general, by the fact
that each event is plotted twice and, at higher
values, by the peripheral nature of the inter-
action [a beamlike particle (m ) and a target-
like particle (p) tend to have a high effective
mass J. However, the production of the N*opo

and the N*of0 final states is apparent from a
comparison of Figs. 1(d) and 1(e), which show
the M(m, v+) and M(m, m+) distributions, re-
spectively, when M(m, p) is in the N*(1240)
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