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We examine in this note the inclusion of high-
er baryonic resonances in the saturation of the
chiral U(3)8 U(3) commutation rules of Gell-
Mann's current algebra. ' We find a consistent
solution if the relation

G 1 D+I'

G 3 D-I'

is verified. Eq. (1) is well satisfied experimen-
tally.

Recent work has led to satisfactory calcula-
tions of Gg/Gy and D/F from sum rules over
experimental meson-nucleon cross sections,
obtained from the current algebra. ' We follow
here the approach suggested by Lee' and Dash-
en and Gell-lVIann, 4 by saturating the commu-
tation relations among stable and resonant bary-
on states and looking for a consistent solution.

In selecting the important resonant mu1tiplets,
we have been guided by a recent discussion'
of higher baryonic resonances, suggesting the
relevance of a classification according to the
representation 20 of SU(6) with orbital angular
momentum L = 1. We thus include among the
initial, final, and intermediate states, besides
the 56 baryon states [multiplets (8, —,'+) and (10,
—', +) in the notation (SU(3),JP)], the states of
20 with L = 1 [multiplets (1, 2 ), (1, 2 ), (1, , ),
(8, 2 ), and (8, & )]. The commutation relation

[F,F ]=-~3~'' "~F,88 8 &

p, ~Ay vj v'

where I y' is an axial-vector generator and

(88 8&)
vj

is a SU(3) Clebsch-Gordan coefficient, is tak-
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en between states with momentum pz and pf,
in the limit pz-—pf-~. From invariance ar-
guments it follows that there is only one inde-
pendent matrix element in this limit for each
transition. A particle of half-integer spin J
is described by a Rarita-Schwinger spinor
(». . . p with J-& Lorentz indices p. , v, ~ ~ ~, A

and subject to the conditions (i) complete sym-
metry and zero traces; (ii) y&g». . .~

= 0;
(111)Pp (p v, . ~ p = 0' (iv) (P™)gpV. ~ p = 0.
The matrix element of I' between states J
and J'P (with I J—J'I» 1) is uniquely determined
in the limit p&

-—pf-~ from the above conditions,
according to the following rules7: For J=J'
and PP' =+1 the only possible coupling between
the spinors g and cp is imp. . . &y4y6(&. ..~,
for J=J' and PP' = -1 the coupling is q&. . .p

xy4(&. . .x, for J = J'+ 1, PP' =+1 the coupling
is P4v ~ ~ x~v ~ ~ A' and for J=J+1, PP= -1
one has icp4v. . .Xy5gv. . .X. We note also that
the operator I'' has the selection rule AIz = 0,
where h. is the helicity, and that the matrix
elements between states of helicity h are re-
lated to those between states of helicity -Iz by
the equation

P' P 5 P'
(J h IF I

J' h) = PP'(J h—IF I
J' ——h). (3)

Eq. (3) is obtained by applying a parity oper-
ation followed by a 180' rotation around an ax-
is orthogonal to the momentum. All the above
conclusions hold in general. The particular
matrix elements of interest here depend upon
the helicities as follows:

X~~3X',

(l IF'I-' &~x~x,

(-,' IF'I-,' )o:x. (r x.iK 3 iK'
where Xi. . .g are Pauli spinors for each index
i, ~ ~ ~, k =1, 2, 3, are symmetric and traceless
in the indices i, ~ ~ ~, k, and satisfy &zgi, . ,& =0.

We write the states as IRp, JPh), where R
denotes the dimensionality of the SU(3) repre-
sentation; p, the set of quantum numbers I,
I„Y;J, the spin and the parity; and Iz, theP
helicity. The matrix elements of the axial charges
can then be written as

(Rp, J~hlF
I R'p', J' h')

Pl
,C(J J', h)

x) G (RR IJ J' )~, &I, (4)

where C(J J', h) are the values assumed for
the different cases of JP, J'P by the couplings
of the preceding discussion, G~(RR'I JPJ'P )
are the unknown coupling coefficients, and the
sum includes all the representations R~ con-
nected through the Clebsch-Gordan coefficient
in (4). For J = J' = & our normalization co-
incides with that of Lee.' From Eq. (3), C(J

h) = (-1) + 1C(JPJ' -h). Also one
has C(J J', h)=C(J' J,h). The matrix
elements of the vector charges can similarly
be written as

Pf
(Rp, J h IF IR'p', J' h')

( I(R' 8 Rail
RR' JJ' pp' hh' ' 'ip' v p /'

x3 ~3x',

x, x',

x x2 2 2 23)

(-'. IF'I-,' & x,. ~3x,.3',
where f(8) = W3 and f(10)= /6. Substituting in-
to Eq. (2), taken between states R, J and R',
and J', we obtain the equation

1 2 P P'
(R/Q) g (R'RQ )( (R'QR )$ (R'R*Q *)[1—$ (BBQ )] Q TG (TR I j J )G, (TR'lp J' )1 P 2 P 3 P 1 n

2rT

PI
x (T$'g I P (RBR'8) IQnP)C(J. , h)C(J' j,h) = -v3 & & & 6,&,&,f(R)R.

8 na RR' JJ' PP' (6)

Equation (6) is written in de Swart s notationsa; in particular, (T$'$ IPll(RBR'8) IQnP) is a crossing
matrix, the symbols $1(R'RQp), etc. , are phases, QnP takes on the values 1, Baa, Bas, Bsa, Bss,
10, 10*, and 27. The values of (R, JP), (R'O'P ), and (T,j~) vary over the selected set of states.
The compact form (6) specialized to our case gives a set of 48 equations for the unknown transition
strengths G ~(RR' I

JPJ'P ). Solution of a set of 48 nonlinear equations is a lengthy and not usually

378
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successful task. Among the various solutions,
the one reported in Table I (including some ar-
bitrary choices of signs) appears as physical-
ly significant. The strengths reported in Ta, —

ble I are all in principle susceptible of physi-
cal interpretations (through weak transitions
by neutrinos; and by relating them to strong
couplings by the Goldberger- Treiman argument).
A very simple and important conclusion can

Table I. Solution of the current-algebra equations,
Eq. (6). The strength G~(RR'[ J&J'+ ) is that of the
transition between the states J+ of the SU(3) represen-
tation R and J'+ of the representation R' [for R =R'
= 8 the index $ distinguishes between symmetric (s) and
antisymmetrie (a) coupling]. The parameters a and d
satisfy 0-a-1 and Idl-4/v3. The symbols n, P, y, 5,
c,g denote arbitrary signs +1. For a =1 the solution
reproduces for the {8,2+) and {10,2+) multiplets the
well-known SU(6) results.

be derived by noting that Ga(8 8 ~
~2 2 )

Qs(6 6l —', + —', +) are given in terms of the single
parameter a. This implies the relation (1).
The above extension of the current-algebra
approach can be applied also to meson states,
including besides the states of 35 of SU(6) those
of 35 with L = 1, and leading to predictions about
the widths and branching ratios of the differ-
ent decay modes. An interesting application
concerns also the commutation relations of
the magnetic and electric moments. It would
be useful if mathematical methods could be
devised to solve the cumbersome nonlinear
sets of eeiuations, compactly expressed by Eq. (6).
A more ambitious program would contemplate
the saturation of the commutator algebra with
representations of noncompact groups, except
for the apparently prohibitive mathematical
difficulties.
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