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It is the purpose of this note to present cor-
ollaries of the Goldstone theorem on broken
symmetries and massless particles.!™® Streat-

er* has recently shown that if a symmetry trans-

formation mixes fields ¢,(x) and ¢,(x) corre-
sponding to different masses, massless par-
ticles follow.® This result, which Streater con-
siders ‘“a significant generalization” of the
Goldstone theorem, as well as stronger results,
are corollaries of Goldstone’s theorem. The
stronger results include the following: Any
difference between the two-point functions of
the two fields, (¢,(x)@,()) and (@,(x)@,(v)),

or between the vertices coupling the two fields
to a third field which is invariant under the
symmetry transformation, entails massless
particles.

Goldstone’s symmetry-breaking condition
requires that a set of fields y,(X, #) which trans-
form under the symmetry operation according
to

11Q,, % D]=2u . v, &, 1) (1)
satisfy

Ebuab’@ 14, (%, 1) 10) 0 (2)

10) is the invariant vacuum state which satis-
fies H10)=P|0)=0 (H is the Hamiltonian, P
is the total momentum); @ is the generator
of the symmetry transformation.

We have been able to show® that massless
particles (as distinct from spurious states)
do indeed follow from the above condition under
the following circumstances”™ (1) The genera-
tor @ satisfies

[#,Q]=0, [P,@]=0. (3)

(2) @ may be expressed as an integral over a
density,?

Q= [q®)dx, (4)
where ¢(X) satisfies
i[B, ¢(®)]=(8/0%)¢(X). (5)

The only requirements on the fields y,(X, ¢)
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is that they satisfy
i[P,y & 0]=(a/03)y (%, 1),
-ilH,y (& 0]=(2/80)y (%,1). (6)

(No requirements of relativistic invariance
are necessary. In their absence “massless
particles” are modes of excitation with ener-
gy tending to zero along with the momentum.)

Suppose, now, that we have two fields ¢,(x),
¢,(x) and that a generator @ satisfying condi-
tions (1) and (2) above induces between them
the transformation

i[Q, v,(x)]=p,(x), i[Q, @,(x)]=~¢,(x). (7

Consider the new fields

¢1y(x)z<pl(x)<p1(x+y), ¢2y(x)5¢2(x)<p2(x+y),
wSy(x)Egol(xkpz(xw), w4y(x)s<p2(x)¢1(x+y)- (8)

They transform among themselves under the
transformation generated by . They also
satisfy Eq. (6). We may therefore use them

as the fields y in Goldstone’s symmetry-break-
ing condition [Egs. (1) and (2)]. We have

1Q, 45, ()]=4, )=y, (o). €)

The vacuum expectation value of the right-hand
side of Eq. (9) is nothing but the difference be-
tween the two-point functions of the fields ¢,(x)
and @,(x) at space-time separation y:

<0I¢2y(x)—w1y(x) 10)
=0 |<02(0)<ﬂ2(y) 10)—(0 Icpl(O)qol(y) 10). (10)

If the two-point functions of the two fields are
not identical, the last expression differs from
zero for some choice of y. Goldstone’s sym-
metry-breaking condition is then satisfied for
the fields z/)ay(x) for that choice of y, and mass-
less particles follow.

Our conditions above are weaker than Streat-
er’s, who demands a difference in mass between
the two fields. Also his restrictions on the
Lehmann spectral functions are not necessary.

A different sufficient condition for the appear-
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ance of massless particles may similarly be
obtained if the two fields ¢,(x) and @,(x) are
both coupled to a third field A(x) which is in-
variant under the transformation induced by
Q {[@,A(x)]=0}. In this case we may define
fields

\I/ayz(x):z/)ay(x)A(x +2) (11)
and repeat the preceding arguments with

¥ay2 (%) replacing ¥4y (x). The conclusion is
that massless particles arise if the three-point
functions (01¢,(0)¢,(¥)A(z) 10) and
(01¢,(0)@,(¥)A(z) 10) are not identical. The
three-point functions may in turn be expressed
in terms of two-point functions and vertices.

If the two points happen to coincide, any dif-
ference in the vertices still leads to massless
particles. Similar use of the freedom to choose
composite fields for the y’s of Egs. (1) and (2)
may be made in other cases to derive various
conditions for the appearance of massless par-
ticles.

The results obtained above are important
in connection with, among others, the attempts
to explain the p-e splitting by spontaneous sym-
metry breaking.’”!' Since the SU(2) group which
rotates between the u and e fields is broken,
massless particles with quantum numbers of
pte™ and p~e™ should appear, provided our
conditions are satisfied.

The essential point to check is whether the
generator @ of the symmetry transformation
commutes with the Hamiltonian. The usual
way of finding commutators of products of field
operators at the same point is dubious as point-
ed out by Schwinger'?; more careful procedures

must be employed. It should be noted that the
time independence of @ is not guaranteed by
its being the space integral of the time com-
ponent of a conserved current.'?
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By exploiting the algebra of currents accord-
ing to the method! suggested by Fubini and Fur-

lan, many interesting results? have been obtained

recently. The present note will be devoted to
a study of the K3 decay.

The matrix element of the strangeness-chang-
ing vector current between K and 7 states is
expressible in terms of form factors defined

as
@)V, ) 1K)

=(2q ' % ZqOVz)‘l’Z{F+([q —q’]z)lq# +qu’]
+F_([q—q’]2)[qu—q“’]}, 1)
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