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As a result of the Conference on Phenomena
in the Neighborhood of Critical Points, Nation-
al Bureau of Standards, Washington, D. C.,
5-8 April 1965, we became interested in the
numerical values of various thermodynamic
functions, at the critical point, as predicted
by the van der Waals equation of state.

The van der Waals equation of state, in re-
duced variables, is

P = 8ny/(3-n)-3n2,

where p =P/Pc is the reduced pressure, n =p/pc
is the reduced density, and y =T/T is the re-
duced' temperatur e.

Using Maxwell's' relationship to ensure that
the chemical potential is the same for coexist-
ing phases, we have derived the following for-
mula:
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where All is the heat of vaporization;
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where C~' is the heat capacity at constant vol-
ume in the ideal gas state at zero density;
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where n, is the reduced density of saturated
vapor, and n3 is the reduced density of satu-
rated liquid. Other thermodynamic properties
are given by
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where p, is the chemical potential or Gibbs free
energy;
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Equations (2)-(13) are exact for a van der
Waals fluid and apply to the two-phase region.

Near the critical point, the solution to Eq. (2)
is given by

-(1-~.) = (1-~,)[1+-,'(l-n, ) +,(1-~,)' 0.5

+ ~ ~ ~ (14)
0.4

By substituting Eq. (14) into the formulas
given above, we have determined the following
limits as the critical point is approached from
the two-phase region:
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FIG. 1. van der Waals fluid, V-T coexistence curves;
y=T/T~.
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From Eq. (1), we can derive
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and thus the first derivative of the vapor-pres-
sure curve is continuous with the first deriva-
tive of the critical isometric.

However,

0. 10

(&'p/&r') (26)
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and the second derivative of the vapor-pressure
curve is discontinuous with the second deriva-
tive of the critical isometric.

As there is no change of Cv with density for
a van der Waals gas,
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(27) FIG. 2. van der Waals fluid, p-T coexistence curves;
y =T/T
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and we see that there is a discontinuity in the
second derivative of the chemical potential.

Also as C~ = C~' we see that there is a finite
discontinuity in the heat capacity at constant
volume when a calorimeter filled to the criti-
cal density is heated through the critical point.

Equation (17) shows that the rectilinear di-
ameter of a van der Waals fluid is not a hori-
zontal line near the critical point.

When Edwards and Woodbury' firs'; presented
and treated their data on the coexistent curves
of helium near its critical temperature, they
used the variables of volume and temperature.
Recently, Tisza and Chase' have re-examined
these data using the variables of density and
temperature. Tisza and Chase show that the
use of the density and temperature leads to
functions that are more linear and more coin-
cident than when the volume and temperature
variables are used. We would like to point out
that the same statement is true for a van der
Waals gas. In Fig. 1 we show the plot of the
same function as plotted by Edwards and Wood-
bury, in reduced variables, for a van der Waals
gas. In Fig. 2, we show the plot of the same
function as plotted by Tisza and Chase. On
comparing Figs. 1 and 2, it is clear that the
curves are more coincident and have less curva-
ture using the variables of density and temper-
ature. In other words, Tisza and Chase's dis-
covery is predicted by van der Waals' equation.

However, it is well known that van der %aals'
equation is not quantitatively in agreement with
experimental data. The range of linearity, of
coincidence, and the initial slope of the lines
in Fig. 2 are not quantitatively in agreement
with the curves on helium as presented by Tis-
za and Chase.

More recently, Edwards' has used a function
suggested by Buckingham' to re-examine his
original data on helium. Edwards uses the
variable X, defined by

He presents graphs of X' and X' versus temper-
ature for helium. We present similar graphs
for a van der Waals gas in Fig. 3.

Edwards says, "Fig. 1 shows how plots of
X' (or p = 3), and X' (or p =-,'), appear for he-
lium-four over the whole range of measurements
from 0.3 to 0.99T&. Clearly, X' is nearly line-
ar (or P =-,') above about 0 BT~ (bu. t not too near
T; see later), in agreement with many other
measurements for many fluids. Note that the
classical X' is not linear over any extended
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FIG. 3. Temperature dependence of X and X for a
van der Waals Quid. ~ is nearly linear above O.ST~;
7 =T/T

FIG. 4. Tests of the asymptotic form of the coexis-
tence curve for a van der Waals fluid above 0.95T~;
v =~/Tc
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range of temperature. " Gur Fig. 3 shows that
mhen the classical van der Waals gas equations
are solved exactly, X3 is nearly linear between
0.8r, and 0.951,.

Edwards also presents plots for helium of
X~, X~, and X /(I-lnX) within 250 mdeg of Tc.
In our Fig. 4, we present similar plots for a
van der %aals gas above 0.95T~. Figure 4
shows that X' is accurately linear above 0.981'~.

Edwards concludes that the functional form
X'/(I-lnX) is the best asymptotic form for
the coexistence curve of helium, with the criti-
cal point lowered 6 to 8 mdeg below the 758
value. Moldover and Little' have obtained ex-
perimental evidence from their specific-heat
mork that the critical point on the T» scale
is j.0 mdeg below the presently accepted value.

The details of derivations and numerical val-

ues of the various thermodynamic functions
calculated for a van der Waals gas mill be pub-
lished as a Bureau of Mines publication.
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Johnson, Hutchinson, and March' (JHM) have
recently reported the striking observation that
an analysis of the experimental radial distri-
bution functions of liquid metals yields a long-
range oscillatory (LRO) interatomic pair po-
tential for a number of metals but gives the
usual van der Vfaals potential for liquid argon.
While LRG potentials have been derived the-
oretically' and observed experimentally3 for
solids, it is not obvious that these results can
be extrapolated to the liquid state. Further,
the JHM analysis of the data is based on the
Born-Green4 and Percus- Yevick' equations which
in themselves may not be capable of yielding
a.ccurate enough information' to give the pa, ir
potentials quantitatively.

In addition to the time-independent study of
JHM, there is some information about the time-
dependent behavior of the motions of the atoms
in liquid Na. Randolphv has analyzed the slow-
neutron inela, stic spectrum of liquid Na and

obtained the time-dependent mean squa. re dis-
placement of the atoms, (x'). He concludes
that at times less than 10 '3 sec the displaee-
ments show a gaslike behavior, while at long-
er times the displacements increase slowly
and show a, high degree of solidlike behavior.
It has been conjectured that such a solidlike
behavior of (r') might result from the existence
of a LRG potential in a. liquid metal.

It ha, s been demonstrated by Rahmana that
the radial distribution function and (r') ca.n be
calculated on a computer using the method of
molecular dynamics. In particular, he solved
the classical equations of motion with period-
ic boundary conditions for a system of 864 par-
ticles interacting with a Lennard-Jones poten-
tia.l. Applying this method to argon, he was
able to reproduce the experimental radial dis-
tribution function and D, the constant of self-
diffusion, which is simply related to the asymp-
totic form of (x'). Using the same computation-
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