VOLUME 16, NUMBER 7

PHYSICAL REVIEW LETTERS

14 FEBRUARY 1966

+0.082, where we have made the comparison

at the same incident momentum. However,

it can be argued that one should really compare
the cross sections at the same @ value.'* As-
suming the energy dependence of Reaction (2)
to be the same as that observed for Reaction (4),
the above experimental ratio is reduced to 0.21.
The good agreement between this and the pre-
dicted ratio provides some quantitative confir-
mation of the suggestion that Reactions (1) and
(2) may be described by the same Reggeized
p-exchange model.
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UNIVERSALITY: A DYNAMICAL PRINCIPLE FOR THE THEORY OF HADRONS*
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If hadrons were bound states of fundamental
quarks! then a problem similar to that of nu-
clear spectroscopy would be the ultimate goal
of their theory. Besides the experimental dif-
ficulty of the possible inexistence of quarks,
this problem raises formidable theoretical dif-
ficulties due to the large binding energies in-
volved. Since it has so far proved impossible
to solve exactly, or in a meaningful approxi-
mation, the essentially dynamical many-body
problem of relativistic quantum theory, it is

interesting to see whether this problem could
be circumvented when calculating at least some
of the physically interesting quantities, such
as the masses of hadrons, their couplings, etc.
We shall show here that a property of strong
interactions which we shall refer to as their
universality, when taken together with the large
M(12) symmetry of strong interactions, does
indeed provide the necessary technique to
achieve this goal. By the universality of strong
interactions, we mean the usual assumption
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that (A) the matrix elements, between one-had-
ron states, of the vector current and of the
divergence of the axial-vector current are dom-
inated, respectively, by single 17 - and 07 -me-
son intermediate states? (pole terms) belong-
ing to the same (6, 6*; L = 0) representation of
the group U(6)® U(6)® O(3), and the new as-
sumption that (B) the matrix elements of the
axial-vector current,® of the energy-momen-
tum tensors, and of the trace of the energy
momentum tensor? are dominated, respective-
ly, by single JPC=1%*- 2**- and 0**-meson
intermediate states (pole terms) belonging to
the same (6,6*; L =1) representation of U(6)
®U(6)®0(3). What we intend to show is that
under these assumptions, the central masses
and the Gell-Mann-Okubo splittings of hadrons,
as well as their electromagnetic and weak in-
teraction properties, can be accounted for.

The consequences of assumption (A) have
been investigated elsewhere®°® with the well-
known results

2M e M
B Q @
Mo==3p ===, u_ =2u =——tpu (1)
P n M, pt @ epMp p
and
oo’ "5 =Cam P n=Cep CEn=" (2)

where we used the following notations: i,
=total magnetic moment of particle x in x mag-
netons, My; (Mpg)=central mass of the (6, 6*;
L=0) [(56, 1; L =0)] representation of U(6)® U(6)
® 0(3).

We shall here deal specifically with assump-
tion (B) and as an illustration of our method
we shall use the representations @y = (6, 1;
L=0) and Bygy (56,1; L=0), i.e., quarks and
baryons, and then state our results for me-
sons (6, 6*; L=0). The representation (6, 6*;
L =1) that appears in assumption (B) will be
relativistically described by a kinetic super-
multiplet?

Ru(q)=(1+7q/m)(szm+75P#), (3)
with
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where m is the central mass of the kinetic su-
permultiplet.
The coupling of R u to quarks is then

B

—0, ")
Q@ (p )QB(P)K RW @)

Treq =%
=a. By ¥ v, B
#1280, (KR T K1) P, (5a)

with g =p’'—p, K=p +p’. The terms in the pa-
renthesis are those obtained from the first term
by exhaustive use of the kinetons 7g and 7K .8
We have not included further kinetons of the
type, say, v;®7,° and as a matter of fact we
shall also set 7@ =0 and refer to this assump-
tion as (C) the “exact” symmetry limit.°
Similarly,

=g Faﬁy(i)’)B

N 0
T'rpp =88 (P)K Ruv @)

aBd
+kineton terms, (5b)

and again we shall ignore kinetic emission. The
couplings of the 1** nonet Cqy to quarks and
the eight JE = 3* baryons are then

q2< 2MQ> w
FCQQ(qz)ngW 1+7— quySyuC uQ

+induced pseudoscalar term, (6a)

and
q* [ 2M q*
T (q2)=g —_— 1+—-——-——B -
CBy;;By/, B m? m 4MBz
X@_ iy .y u.)
B '5'w B'D+4F-1S
+induced pseudoscalar term, (6b)
with

F=Tr(@B[c,B)), D=Tr@B{c,B}), S=TrCTr{BB).

Because of the Bargmann-Wigner (BW) equa-
tions imposed on R u these equations are only
valid near g2=m?, Since we will be interested
in the extrapolation of (6) to ¢2=0, it is impor-
tant to specify that we will use the procedure
of Ref. 5 to do this. This amounts to replacing
g%/m? in (6) by its value (=1) at the pole g%=m?2°
but keeping the ¢2 dependence due to (1-g2%/
4Mp?) which is due to the baryons rather than
mesons being on their mass shell. Requiring
the 1++ Cp-meson pole to dominate the matrix
elements of the axial-vector current of weak
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interactions then means
1+2M_/m
gQ( + Q/ )

gB(1+2MB/m)=1’ (™)

so that we have!!

©,/Gy), *P/(GA/GV)Q ~Q =5/3. (8)
The couplings of the scalar nonet to quarks
and baryons are

<2>1/2 ZMQ qz
T QQ(q2)= 3 Q p” (1+2mMQ>ﬁquQ (9a)

and

9 1/2 oM qz
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B
q2
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Here again we replace 1+q%/2mM, ~1+m/2M,
(x=Q,B) and 1-¢%/4Mp?*—~ 1-q%/4Mp* before
extrapolating away from g2=m2, Now accord-
ing to (B) we assume the SU(3)-singlet (I=Y
=0 member of the octet) S meson to dominate,
at ¢2=0, the central [su(3)-breaking] part of
the matrix element of the mass—i.e., trace

of the energy-momentum tensor —operator.
With the ratio of 2 /&g given by (7), we then
find

M /MQ = (10a)

(E-N)/S-d)=2,

where My is the central quark mass and S (d)
is the mass of the I=0 (I = 3) quark. Relation
(10b) is trivial to understand with a quark
model of baryons.! The factor 3 in (10a) is,
of course, due to the fact that there are three
quarks in a baryon. It disagrees with present
experimental “evidence” but this, of course,
is of no serious consequence to our theory for
either (i) there may not exist quarks at all in
which case our argument so far is of merely
academic interest or (ii) even if there exist
quarks there might appear new interquark in-
teractions due to the nonvanishing quark trial-
ity. Such interactions would, of course, upset
(10a) without affecting (10b).

We have first compared quarks and baryons
merely because in this case the algebra is es-

(10b)

sentially simplified and the physical ideas can
be clearly exhibited. The nontrivial case is,

of course, that of applying universality ideas

to mesons (6, 6*;L=0) and baryons (56, 1; L =0).
Again we fix the gg /g ratio from the condi-
tion

G,/6,)

=/ Ca/Co o e =5/3, (1)

obtained in exactly the same way as (8). We
then obtain from assumption (B) applied as
above!?

_3
MB/MM— 2, (12a)
(K?-72)/(E?-N?)=3. (12b)
Of course, from (1) and (12a) we also find!?
By = iy (12¢)

Relations (12) have been obtained previously
by the author!’® under more dynamically special-
ized assumptions. Both relations (12) are in
good (error <20%) agreement with experiment.

One can discuss the universality of the 2+
meson couplings along the same lines. One
then finds the relation!

tot( B)= t t(BB) (13)

Similarly, as is well known, (A) and M(12)
invariance also lead to the relation*

otot(ﬁp)—o (pp)=5lo, (17p)-0

tot t(vr"“p)]. (14)

tot
We now wish to return to the problem mentioned
at the beginning of this paper, namely that of
hadron spectroscopy. The relations (1), (2),
(10), (12), (13), and (14) could be also obtained
from an independent-particle nonrelativistic
model of hadrons in terms of quarks.'® The
advantage in using universality is that one has
an explicit relativistic dynamical principle from
which to derive these results. Presumably,

a detailed solution (if it were possible) of a
relativistic many-body problem would automat-
ically lead to these relations. In particular

(A) is an automatic consequence of any bound-
state model.!® It is an open question, however,
whether (B) can be derived from bound-state
equations without an explicit solution of these
equations. Nevertheless (A) and (B) are very
simple quantum-theoretical statements which
hold independently of any quark substructure

of hadrons.
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It is also interesting to speculate on the uni-
fication of (A) and (B) by extending the group
U(6)® U(6)® O(3) to'® U(6)® U(6)® O(3,1) or
U(6)® U(6)® O(4). In the case of U(6)® U(6)
® 0(3, 1), both (6,6*; L =0) and (6,6*; L =1) would
be members of an infinite-dimensional unitary
representation Do = (6, 6%; L=0,1,2,-+-). In
the case of U(6)® U(6)® O(4), the finite-dimen-
sional unitary representation (6, 6*; z, z) would
relate precisely (6, 6%; L=0) and (6, 6*; L =1).""

To conclude, let us emphasize once more
that along with M(12) invariance, universality
is a basic ingredient in the derivation of Egs. (1),
(2), (10), (12), (13), and (14), all of which
agree with experiment and significantly reduce
the number of independent parameters in the
theory of hadrons.

The author wishes to express his sincere
thanks to Reinhard Oehme for many valuable
discussions.

Note added in proof. -One can apply the tech-
niques expounded above to electromagnetic mass
splittings of hadrons. One then has to take into
account the self-energy corrections due to
hadron-photon intermediate states, the contri-
bution of which contains an SU(3) 27-plet term.
After subtracting this, we find

(K 02—K +2)— (m02—7+2)
s -2_y+2 =

1
3 (12¢)

to be compared with the experimental value
1/3.4. Eq. (12c) is the electromagnetic analog
of Eq. (12b).

*This work is supported in part by the U. S. Atomic
Energy Commission.
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