⁴⁷K MASS FROM THE REACTION ⁴⁸Ca(d, ³He)⁴⁷K[†]

E. Newman and J. C. Hiebert*

Oak Ridge National Laboratory, Oak Ridge, Tennessee

and

B. Zeidman

Argonne National Laboratory, Argonne, Illinois (Received 19 November 1965)

The Q value for the reaction ${}^{48}Ca(d, {}^{3}He){}^{47}K$ was measured to establish the ${}^{47}K$ mass. The Q value was found to be -10.304 ± 0.012 MeV, which implies a ${}^{47}K$ mass excess of -35707 ± 21 keV (${}^{12}C=0$). In addition, the first excited state of ${}^{47}K$ was established at 370 ± 15 keV and is tentatively identified as an *s*-hole state.

A 34.1-MeV deuteron beam from the Oak Ridge isochronous cyclotron was scattered from an 0.2-mg/cm² CaO target enriched to 95.6% in ⁴⁸Ca. The target had been evaporated onto a thin carbon backing at Argonne National Laboratory and had oxidized in transit to Oak Ridge. A semiconductor $\Delta E - E$ detector telescope was used for mass identification of the reaction products. For this experiment both detectors were transmission-mounted, surfacebarrier detectors. The *E* and ΔE pulses were added at the amplifier input and ΔE vs $(E + \Delta E)$ spectra were recorded on a 20000-channel, three-dimensional, pulse-height analyzer. The observed energy resolution for the reaction $^{48}Ca(d, {}^{3}He)^{47}K$ was 90 keV (full width at halfmaximum), with the cyclotron beam spread contributing about 80 keV.

A pulse-height spectrum of the ³He particles observed at $\theta = 20^{\circ}$ from the (d, ³He) reactions on ¹²C, ¹⁶O, ⁴⁰Ca, and ⁴⁸Ca present in the target is shown in Fig. 1. Each ³He group in Fig. 1 is identified by the state in the residual nucleus. The strongest three groups, corresponding to reactions proceeding to the ground state of ¹⁵N, the ground state of ¹¹B, and the third excited state of ¹⁵N, were used to calibrate the energy scale. Eight separate determinations of the Q value for the reaction $^{48}Ca(d, d)$ ³He)⁴⁷K were made at laboratory angles ranging from $\theta = 14$ to 35°. From these measurements we obtained the value $Q = -10.304 \pm 0.012$ MeV for the ground-state reaction. Similarly, the first excited state of ⁴⁷K was established at 370 ± 15 keV. To determine the mass of 47K from the measured ground-state Q value we rely on the ⁴⁸Ca mass. A recent measurement¹ has redetermined the mass excess of ⁴⁸Ca as -44240 ± 14 keV, whereas the latest compila-

FIG. 1. Pulse-height spectrum of ³He particles resulting from $(d, {}^{3}\text{He})$ reactions in a ${}^{48}\text{CaO}$ target on a ${}^{12}\text{C}$ backing.

tion² of relative nuclidic masses reports the value -44216 ± 9 keV. Using the latter value with the deuteron and helium-3 mass excess-es,² we determined the mass excess of 47 K to be -35707 ± 21 keV. The value presented in the compilation of Ref. 2 is -36250 ± 300 keV.

The ground state of ⁴⁷K has an isobaric analog in ⁴⁷Ca, i.e., the lowest excited state in ⁴⁷Ca with $J^{\pi} = \frac{3}{2}^+$, $T = \frac{9}{2}$. Recently, Jänecke³ has proposed a semiempirical formula which can be used to predict the excitation energy of any isobaric analog state, and thus estimate the masses of unknown nuclei. Using this formula, for odd-A nuclei,

$$\Delta E_{T, T'} = \frac{a(A)}{A} |T(T+1) - T'(T'+1)|,$$

and his empirical value of a(47) = 63 MeV, we find $\Delta E_{9/2,7/2} = 12.1 \pm 1.0$ MeV. The energy difference² between the mirror nuclei ³⁹K and ³⁹Ca was adjusted for radius to give the ⁴⁷Ca-⁴⁷K Coulomb energy difference.⁴ From this value and the *n-p* mass difference, we find the predicted mass excess of ⁴⁷K to be -36.5 ± 1 MeV, which agrees with the experimental value. From our measurement of the ⁴⁷K mass and the Coulomb energy difference above, we are able to predict more accurately the lowest $T = \frac{9}{2}$, $J^{\pi} = \frac{3}{2}^+$ state in ⁴⁷Ca to be located 12.70 ± 0.12 MeV above the ground state.

Angular distributions for the $(d, {}^{3}\text{He})$ reactions populating the ground and first excited states of ⁴⁷K are shown in Fig. 2. In analogy with the reaction ${}^{40}Ca(d, {}^{3}He){}^{39}K, {}^{5}$ we have assigned a $(1d_{3/2})^{-1}$ proton state to the ⁴⁷K ground state and a $(2s_{1/2})^{-1}$ proton state to the first excited state. The distorted-wave Born-approximation predictions shown in Fig. 2 use opticalmodel potentials extrapolated from opticalmodel analysis of deuteron and helium-3 scattering on nearby nuclei at the appropriate energies.⁶ As expected, the quality of the fits is poor, but the spectroscopic factors extracted from comparing the predictions to the data, as shown, are $S(1d_{3/2}) = 3.55$ and $S(2s_{1/2}) = 1.15$. These numbers are in excellent agreement with the corresponding ${}^{40}Ca(d, {}^{3}He){}^{39}K$ spectroscopic factors⁵ and thus substantiate our assignment of a $(2s_{1/2})^{-1}$ proton configuration to the first excited state.

The appropriate elastic scattering and additional $^{48}Ca(d, {}^{3}He)$ measurements are being made, better to assign spins and spectroscopic factors to these states and to more tightly bound proton states.

FIG. 2. Angular distributions for the reaction ⁴⁸Ca(d, ³He)⁴⁷K to the ground and first excited state of ⁴⁷K. The upper curve is an l = 1 distorted-wave Born-approximation prediction; the lower curve an l = 0 distorted-wave Born-approximation prediction.

The authors wish to express their thanks to R. H. Bassel for many helpful discussions. They also wish to acknowledge the Oak Ridge isochronous cyclotron operations staff for their cooperation in performing the experiment.

[†]Research jointly sponsored by Argonne National Laboratory and the U. S. Atomic Energy Commission under contract with the Union Carbide Corporation.

^{*}U. S. Atomic Energy Commission Postdoctoral Fellow (1963-1965) under appointment from the Oak Ridge Institute of Nuclear Studies.

¹C. Chasman, K. W. Jones, and R. A. Ristinen, Phys. Rev. (to be published).

²J. H. E. Mattauch, W. Thiele, and A. H. Wapstra,

Nucl. Phys. 67, 1 (1965).

³J. Jänecke, Kernforschungszentrum Karlsruhe Report No. KFK-296, 1965 (unpublished).

⁴G. T. Garvey, J. Cerny, and R. H. Pehl, Phys. Rev. Letters <u>12</u>, 726 (1964). ⁵E. Newman, J. C. Hiebert, and R. H. Bassel, Bull. Am. Phys. Soc. <u>10</u>, 27 (1965); and to be published. ⁶L. C. Becker, J. C. Hiebert, and E. Newman, Phys. Rev. (to be published). R. H. Bassel, private communication.

PROPOSAL FOR AN EXPERIMENT ON ADIABATICALLY INDUCED COULOMB FISSION*

Eugene Guth

Oak Ridge National Laboratory, Oak Ridge, Tennessee

and

Lawrence Wilets

University of Washington, Seattle, Washington (Received 18 October 1965)

Nuclear fission thresholds are fairly well known from the shape of cross-section curves as a function of energy. The thresholds yield directly the height of the saddle-point energy above the nuclear ground state. What is not so well known experimentally is the shape of the nucleus at the saddle point. Some information about this shape is known from (I) spontaneous fission lifetimes and the threshold behavior of the fission cross sections, and (II) the angular distribution of fission fragments. Both cases listed under (I) measure the quantity $\hbar\omega_f$, where $\omega_f = (C/B)^{1/2}$ is the inverted oscillator frequency at the top of the fission barrier. The position of the maximum does not enter. Both measurements yield¹ $\hbar \omega_f \approx 0.4-0.5$ MeV for even-even fissioners above the including uranium. Case (II) is model dependent and is based upon the variation in the statistical distribution of levels with deformation.² The purpose of this note is to propose an experiment which yields a measure of the saddlepoint configuration in an easily interpretable manner.

To date, all induced (as distinct from spontaneous) fission experiments consist of depositing energy into a "compound nucleus," and then observing the decay through the fission channel. We propose introducing a Coulomb field which, ideally, distorts the "cold" nucleus up to a saddle point, after which the nucleus slides down the potential hill to scission. If the distorting potential is introduced sufficiently slowly, the interpretation of the experiments will involve only electrostatics and nuclear statics.

Consider a head-on collision between a pro-

jectile (1) and a target (2). Let the reduced mass and center-of-mass energy be denoted by mA_{γ} and E. Then the classical turning point d (which we will choose to be outside the range of nuclear forces) is given by

$$E = Z_1 Z_2 e^{2} / d.$$
 (1)

(This neglects the target distortion.) For present purposes, we calculate the electric polarization energy for a target assuming pure quadrupole distortion only; that is, the target contains only monopole and quadrupole moments. (The projectile is assumed to be unpolarized.) We will further consider only prolate, axially symmetric distortions, with the target axis perpendicular to the trajectory. (We ignore the tendency of the Coulomb field to introduce nonaxial symmetry or oblate deformation.³) The electric polarization energy is given by

$$V_Q = -\frac{1}{2}Z_1 eQ/d^3,$$
 (2)

where Q is the expectation value of the operator qr^2P_2 for the target. If we further assume that the projectile moves very slowly (we present below calculations which do not make this assumption), then the condition for fission is that V_Q plus the target deformation energy $\epsilon(Q)$ have no maximum at closest approach. Since V_Q is linear in Q, it follows that the position of the inflection point in $V_Q + \epsilon$ is determined by ϵ . The threshold occurs for

$$\frac{Z_1 e}{2d^3} = \frac{d\epsilon}{dQ} \left| \inf_{\text{inflection}} \equiv \epsilon' \right|$$
(3)

or, taken together with (2), the "infinitely slow"