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In this Letter we discuss the scattering of
light by mobile electrons (or holes) in semi-
conducting crystals. Two processes will be
considered: elastic (Thomson) scattering, and
Raman scattering by electrons in a magnetic
field. The elastic scattering has previously
been treated'&' within the framework of the ef-
fective-mass theory (which is valid at low fre-
quencies). We will show that, at higher frequen-
cies, it is possible to achieve large enhance-
ments of the cross section. This result may
be of some importance since incoherent scat-
tering experiments in solids are presently
made difficult by the smallness of the cross
section.

The Raman process we treat is one in which
the electron changes its Landau-level quantum
number by An = 2, and the outgoing radiation
is shifted in frequency by twice the cyclotron
frequency. For free, nonrelativistic electrons,
it is easy to see that the matrix element for
such a transition vanishes. However, if the
electrons are relativistic (or the band struc-
ture nonparabolic) the cross section is finite
and, in appropriate materials, can attain quite
reasonable values.

Consider first the elastic scattering. Inter-
est in this process has been aroused by recent
papers'&' in which it is shown that a study of

such scattering gives detailed information con-
cerning the plasma properties of electrons in
semiconductor s. The multivalley semiconduc-
tor is of particular interest since it can sup-
port an acoustic mode (the so-called plasma.
sound wave) whose existence and dispersion
relation one hopes to infer from the spectrum
of the scattered light. In both the analyses
referred to above, the electrons are described
in the effective-mass approximation, and an
individual electron is assumed to scatter with
cross section

where c„c,are polarization vectors of the
incident and scattered light, and n the (dimen-

.sionless) reciprocal effective-mass tensor.
The main aim of these calculations was to de-
termine how the intensity and spectrum of scat-
tered light is modified by Coulomb interactions
between electrons. Here, on the other hand,
we consider the problem of scattering by a sin-
gle electron in the conduction band of an other-
wise intrinsic semiconductor. This system
is described by the Hamiltonian

[p—(e /c) A]'H= +Vr,
mp
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where mp is the free-electron mass, A the vec-
tor potential of the electromagnetic field, and

V(r) the crystal potential. It is well known'

that, for completely free electrons (V=0), the
major part of the matrix element for the scat-
tering of light is produced by the A.' term of
Eq. (2). There is also a contribution, in sec-
ond order, from the p A term, but a near can-
cellation of the energy denominators in the two

!
Feynman diagrams illustrated in Fig. 1 reduces

its amplitude by a factor v/c (where v is elec-
tron velocity) compared to the A' term.

For the case of an electron in a crystal, the
situation with respect to the intraband matrix
elements of the p A interaction is similar.
However, no cancellation occurs in processes
involving virtual interband transitions, and
they can drastically change the scattering.
A straightforward calculation shows that the
total matrix element for elastic scattering by
an electron of crystal momentum k is

I

( e' 'l f2nhc' ~ (kO Ip e, Ikn)(kn lp &~ Ik0) (kOip &~ ikn)(kn ip'e, lkO)

(m c') ( (u ' ' ~ m [E (k) —E (k) k(u-] m [E (k) -E (k) +h(u ]n 0 0 0- g

Here (k0 I p e, Ikn) is the matrix element of the
operator p e, between Bloch states of wave
vector k in bands 0 and n; Eo(k) and En(k) are
the corresponding energies; and the sum is
over all bands except the conduction band. The
first term within brackets in this formula arises
from the A' term of the electron-photon inter-
action; the other two are second-order contri-
butions of the p A term, corresponding to the
diagrams shown in Fig. 1. In the limit ~p-0,
k =0, the bracketed expression in Eq. (3) be-
coDle8 E'p Q E'y and the resulting cross section
is that given by Eq. (l). At higher frequencies,
on the other hand, the resonant denominators
can produce important changes in the scatter-
ing. The form of this frequency variation will
usually depend in detail on the band structure,
but can be explicitly evaluated for a two-band
model of the semiconductor (this is a fair ap-
proximation in a number of important cases4).

FIG. 1. Feynman diagrams for light scattering via
the p.A interaction.

The expression for the cross section of an elec-
tron at k = 0 is then

do t'e' )' E

dQ (mOc') ~E ' —(S&u )'

(5(d

X (Eo' 9 Ei) —! (Eo Ci)
G

where Eg is the direct band gap. In materials
with small effective masses this cross section
is bigger than that at zero frequency by nearly
a, factor (EG /[EG -(1+0) ]j'.

To observe the cross-section enhancement
implied by Eq. (4) it is clearly desirable to
use light frequencies such that S~p-EG. This
condition necessitates a direct band-gap semi-
conductor. On the other hand, the calculations
of Refs. 1 and 2 indicate that the most inter-
esting collective effects are to be expected in
multicomponent plasmas. The only common
direct-gap, multivalley semiconductors are
the lead salts, ' PbS, PbSe, and PbTe. Of these,
PbTe has the advantage of having a relatively
large longitudinal-to-transverse effective-mass
ratio (mf/mf -10), and thus might be expected
to show a particularly well-defined acoustic
mode. ' In Pbse the mass ratio is lower (mf/mf
—2), but the gap energy can be turned over a
considerable range with pressure. ' This fact
might be of importance in adjusting EG to the
frequency of one of the high-powered infrared
lasers. '

We now turn to the Raman scattering of an
electron in a magnetic field. Here the A' term
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in the electron-phonon interaction gives no
contribution in the dipole approximation, and
the whole matrix element must arise from p A
terms. The electric-dipole selection rules
insure that in a two-photon process the Lan-
dau level quantum number of the electron
changes either by An =0 (elastic scattering)
or bn =+2 (Stokes and anti-Stokes scattering).
The same Feynman diagrams contribute to
the Raman processes as do to the elastic scat-
tering (see Fig. 1) and, once again, they can-
cel for free, nonrelativistic electrons. The
cancellation is a direct consequence of the
fact that the Landau levels are equally spaced.
This spacing, in turn, reflects the fact that
a nonrelativistic electron in a, magnetic field
behaves as a harmonic oscillator. One does
not, of course, expect frequency mixing when

light interacts with a perfectly harmonic sys-
tem. However, if the electron's properties
are slightly anha. rmonic (as will occur if the
conduction band is nonparabolic) the cancella-
tion is upset and the Raman process has a fi-
nite matrix element.

One material in which nonparabolicity effects
are particularly large is InSb. To estimate
the Raman cross section of an electron in the
conduction band of this crystal, we carry out
the effective-mass transformation to fourth
order and obtain the Hamiltonian

2
H'= — -p R + (p p, xF)2m* E

1 ~2 2 e 2~2

E 2m. -I B '2m.E
G G

where v = [p—(e/c)A], p is the magnetic moment
of the electron, and F the electric field. We
have used the two-band model in obtaining H'.
This approximation is made for simplicity and
is not a crucial one. H' would have the same
form, though with slightly altered coefficients,
in a more exact treatment. It should be em-
phasized, however, that this expansion for H'
is a power series in both the quantities (v'/
2m*EG) and (hap/EG). Thus, Eq. (5) can only
be used to calculate the Raman cross section
for photon frequencies somewhat less than EG.
When 5~0 -EG the band-decoupling scheme
no longer converges, and it is necessary to
use exact valence- and conduction-band wave
functions to calculate the cross section.

The v4 term in H' produces an unequal Lan-
dau level spacing and upsets the matrix-ele-

ment cancellation which occurs for parabolic
bands. In a.ddition, it gives rise to new elec-
tron-photon coupling terms of the form p'A',
p'(p A), and (p A)'. Of these, only the last
need be considered in lowest order. The A'
term gives no Raman effect in the dipole ap-
proximation, and the contribution of the sec-
ond is reduced by the energy denominator can-
cellation. The (p A)' term produces a Raman
effect in first order and is not subject to the
cancellation. The total Raman matrix element
turns out to be

( e' ) mac' (e -ie ) (e -ie l ( 2 l
0+ py

~

1+ 1

Imc'j (~ ~ )'~' ( ~2 I ( v2 J (E
0 1 G

u& (cu -2v ) (v+2 Iv+ In+1)(n+ 1 In+ In)0 0 c
X

((d -&d )0
m+

for a transition in which an electron is excited
from the nth to (n+2)nd Landau levels. In this
formula ~~ is the cyclotron frequency, ~+
= (~~+in&)/v 2, and the dc magnetic field has
been taken in the z direction. We have neglect-
ed the contributions of terms involving p. to
this matrix element since the spin mass in InSb
is about three times larger than the cyclotron
mass. Assuming that the electron starts in
its lowest Landau level (n = 0), one computes
a, Raman cross section

dv ( e' )' (t(u )'((u ) &u ((u -2~ )
'

dn Em*c') E, E J (cd I (cu -~ )'
C

x(C +E )(E +6 )~0x 0y 1x 1y
(7)

where ~1=~0-2~~ is the frequency of the scat-
tered radiation. Once again, it should be
stressed that this formula is only correct when

(5&up/EG) is smaller than unity. To investigate
the behavior of the Raman cross section as
8~0-EG, we have also carried out a calcula-
tion for the simple two-band (Dirac) model
which describes the band structure of Bi,' and
possibly some semiconductors. The matrix
elements and selection rules for this model
are known' and the computation is straightfor-
ward. The resulting cross section is essential-
ly identical to that of Eq. (7), except enhanced

by the factor fEG'/[EG'-(I&up)'P which appears
in Eq. (4).' From these results we conclude
that the Raman scattering of electrons in semi-
conductors will, under fairly general circum-



VOLUME 16, NUMBER 6 PHYSICAL REVIEW LETTERS 7 I'EBRUARY 1966

stances, have a cross section of the order of
that given by Eq. (7) (with possible enhance-
ment for k&u0-EG)

Finally, we make estimates of the scattered
powers that might be attained in an experiment
to detect the Raman effect. For this purpose,
InSb seems an ideal crystal (since sizable val-
ues of S&uc/EG can be achieved with reasonable
magnetic fields), and a recently developed CO,
la.ser' (100 W cw at 10 p) a good source. For
example, in InSb a field of 30 kG gives a cy-
clotron energy h~~ = 0.02 eV, and the Raman
cross section [from Eq. (7)] is about 4 &&10

cm'/sr. The Raman-scattered power from
a 1-cc sample containing 10' electrons is then
about 10 6 W/sr at a, wavelength of -15 p. This
power should be detectable in the presence of
the elastically scattered background at 10 p, .
There is even a possibility, with focused beams
and a somewhat more heavily doped sample,
of achieving stimulated Raman emission. If
such a situation could be reached it would pro-
vide an intense, magnetically tunable source
of infrared radiation.

The author is grateful to P. Fleury, J.J. Hop-
field, and Y. Yafet for stimulating conversa-
tions on the topics discussed above.
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The magnetoacoustic effect is now widely
employed as a tool for studying the geometry
of Fermi surfaces. ' Since the technique gives
extremal dimensions of orbits, it can be used
to resolve questions concerning details of band
structure in metals. The effect is observed
when the electron mean free path l is greater
than the sound wavelength ~, or ql &1, where
q=2v/A. =&a/vs, ~ and vs being the sound fre-
quency and velocity.

For high-purity metals now available l -0.1
cm and this condition is easily satisfied. In
fact, for 100-Mc/sec sound, ql ~ 300 in the
cadmium employed in some of our experiments.
Under such conditions many oscillations appear
in a plot of attenuation versus magnetic field,
and one can even study beats between oscilla-
tions produced by different extremal orbits.

We show here that ql ~ 300 causes an effect
related to cyclotron resonance which may easily
be confused with beats between two series of
geometric oscillations having nearly equal per-
iods. The effect arises from the fact that vs/
vF-1/300 in typical metals, where vF is the
electron Fermi velocity, so that ql ~ 300 im-
plies &7 ~1, where vFT =l. Cyclotron resonance
will occur when ~ =neo~, where ~~ is the cyclo-
tron frequency of the electrons. ' In addition,
when ~~ = co the sound field will move a distance
z/2 by the time the electrons go half-way around
the orbit so that a relative minimum in atten-
uation will occur for an orbit diameter ordinar-
ily corresponding to a maximum for geometric
resonance, and vice versa.

Figure 1 shows the normalized compressiorial-
wave attenuation Sll = n/(Nm/pvsT), where n
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