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EFFECT OF CRYSTAL SIZE ON MOSSBAUER RECOIL-FREE FRACTION IN Au'¥’
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We have observed the Mdssbauer effect in
Au'® microcrystals of mean diameter 60 and
200 A. The microcrystals were grown in a
hydrosol and bound in gelatin. Mssbauer ab-
sorption measurements were made with the
absorber temperature ranging from 4.2 to 63°K
while the Pt'®’(Au) source was maintained at
4.2°K. Our result indicates that the crystal
surfaces are loosely bound to the gelatin and
that the recoil-free fraction is greater in the
smaller microcrystals than in the larger ones.
The results of Mdssbauer measurements on
the two microcrystal samples are shown in
Fig. 1.

Au'®” was chosen for this work in preference
to the more common Mossbauer isotope, Fe®,
primarily because the preparation of gold hy-
drosols with a well-defined size distribution
is straightforward, while iron microcrystals
cannot be readily prepared due to the chemical
activity of iron. Growth of particles smaller
than 60 A has not yet been attempted since dis-
tribution of particle size of the smaller crys-
tals is difficult to control. The shape of the
particles grown for these experiments is cube-

octahedron, but since this shape is nearly spher-

ical it is common to speak of the particle di-
mension as a “diameter.” Particle size and
distribution were determined by electron mi-
croscopy. Considerable care was exercised
in preparation of the absorbers to insure uni-
form deposition of gold.

The y-ray sources were 0.005-inch enriched
platinum foils containing 21 mg of Pt!°®. They
were irradiated at the Oak Ridge National Lab-
oratory Research Reactor for 24 hours, and
the total initial activity of a source upon receipt
was approximately 25 mCi. The radiation from
this source contained an appreciable component
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FIG. 1. Recoil-free fractions versus absorber tem-
perature for gold microcrystals. Source temperature
is 4.2°K. The solid curves are least-squares fits to
the data points using Eq. (1). The dashed curve is cal-
culated for bulk gold using O =0°K and ©p =163°K.
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of gold x rays as well as y rays from other
platinum isotopes which were not resolved from
the 77-keV y ray used in these experiments.
Consequently, careful measurements of the
background were obtained using nonresonant
critical absorbers of platinum and iridium.

The source and absorbers were mounted in
a variable temperature liquid-helium cryostat.
An electromechanical transducer similar to
that used by Roberts and Thomson! was used
to apply sinusoidal motion to the absorber.

A multiple absorber provision allowed any one
of the absorbers used in this experiment to be
placed in counting position without warming

the assembly. After passing through the ab-
sorber and the liquid-helium Dewar, the radia-
tion was counted by a NaI(T1) scintillation count-
er located external to the cryostat. The 77-
keV y rays were selected by a differential dis-
criminator, and the resulting Mdssbauer spec-
trum recorded on an RCL 512-channel analyzer
operating in the multiscaler (time) mode. The
single-line absorption spectra were analyzed
with least-squares computer programs dis-
cussed elsewhere.?

Values for the Mossbauer recoil-free frac-
tion in an absorber, f’, were calculated on the
basis of the absorption integrals for each ex-
periment.” For an absorber it is convenient
to define a dimensionless thickness ¢=no,f’,
where n is the number of Mdssbauer nuclei/
cm? and 0, is the resonant-absorption cross
section. For ¢ <2 the absorber is said to be
thin, and analysis of the data is relatively sim-
ple.® For the absorber composed of 60-A mi-
crocrystals, t=1.8 at 4.2°K, while for the 200-
A absorber, £=1.3 at the same temperature.
Details of absorber preparation, the experi-
mental procedure, and the calculations will
follow in a separate paper.

The Mossbauer recoil-free fraction depends
on the detailed nature of the phonon spectrum
of the solid. Small crystalline particles have
phonon spectra different from the bulk material
for two primary reasons: Long-wavelength pho-
nons cannot be sustained in small crystals;
and a large percentage of the atoms in these
small crystals reside on the surface produc-
ing surface waves. Montroll? gives a phonon
distribution function for surface waves. To
complete a description of the phonon spectrum
within the Debye continuum framework, it is
necessary to cut off the range of phonon fre-
quencies so that phonons whose wavelengths
are considerably longer than the dimension
of the crystal are not allowed. Thus, a suit-
able distribution function containing surface
modes for the phonons must be cut off at both
a low-frequency and the usual high-frequency
limit. Physically this requirement is imposed
because a classical elastic standing wave must
“see” boundaries separated by at least half
a wavelength. The presence of surface waves
and a long-wavelength limit for “volume” pho-
nons turns out to be both mathematically and
physically inseparable. When the Debye-like
frequency spectrum is renormalized to 3N-6
modes, N being the number of atoms in the
crystal, one finds that f’ is increased, since
it is the long-wavelength phonons which readily
participate in nonrecoilless events. It might
be remarked that this effect should be partially
offset by the decreased binding of surface atoms,
since in the 60-A crystals almost half the atoms
lie on the surface (assumed to be two atoms
thick).

The long wavelength cutoff can be described
by a characteristic temperature, Op;. An ex-
pression for f/(T) has been derived on the basis
of the Debye theory using Oy, as well as the
customary short wavelength cutoff, Op:
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where % is Planck’s constant, % is Boltzmann’s constant, m is the mass of the recoiling atom, A
is the wavelength of the gamma ray, c is the phonon progagation velocity, d is the crystal “diame-
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We can express Oy in terms of d. If the bound-
aries of the particles are rigidly fixed, they
act as nodes and we would expect Oy =hc/2kd.
On the other hand, if the boundaries are free,
Love® has shown that Oy =3.66kc /2kd. For
microcrystals 60 A in diameter, we would ex-
pect to find ©p1="7.8°K for spherical crystals
with fixed boundaries and ©y1=28.7°K for spher-
ical crystals whose boundaries are free. When
the data are analyzed by a least-squares com-
puter program, we find Op1=23°K. Likewise
for microcrystals 200 A in diameter we would
expect to find Oy = 2.3°K for spherical crys-
tals with fixed boundaries and ©p1=8.6°K for
crystals with free boundaries, while the data
yield ©p1=8°K. These data indicate that the
gold microcrystals embedded in gelatin are
loosely bound to the gelatin, so that their sur-
faces are free, but since the recoil-free frac-
tion is not a strong function of ©y1 at low tem-
peratures, these values of ©y; could be in er-

ror by as much as 25%. The experimentally
determined values of ©p for the 200-A and the
60-A samples are 163 and 173°K, respectively.

The measurements described here are the
results of three data runs on the same set of
microcrystal absorbers. More extensive mea-
surements of this type covering a wider range
of crystal size as well as other crystalline ma-
terials are planned.

The authors wish to thank Professor Robert H.
Morriss and Dr. Lattie F. Collins for valuable
assistance in the preparation of the gold hydro-
sols, and Lt. Col. David C. Russell for his help
in the experiment.
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We have studied the hfs spectra of ground-
state (He®)* ions contained in a quadrupole rf
ion trap. Linewidths as narrow as 10 Hz have
been obtained thus far, demonstrating the long
phase-memory times of the internal precession
realizable in our technique.

The hfs levels of (He®)t in a magnetic field
are split according to the Breit-Rabi formula
[Fig. 1(a)] and the following transitions between
the sublevels are possible:

a: 00—~1latv =Av=-v_+6,
a z
b: 00—10 at Vb=Av+26,

c: 00—1-latv =Av+v_+56,
c z

d: 11-10 at Vd=Vz+5,

e: 11—-1-1at v, =V, (double quantum),

f: 10—1-1 at Vf= uz—é_

Here Av = 8665.649 MHz is the absolute value
of the zero-field his separation, v; is defined
by 2hv, =—-(gr+&J)LoH, and 6 may be expressed
as 6= vf(vf/Av)[l—-(4g1/gJ)+ (2Vf/AV)]. We
have observed all listed transitions in a mag-
netic field H corresponding to V= 10X(1£5

X 107%) MHz (about 7.23 G) and 6=11512 Hz
which was stabilized by a potassium optical
pumping magnetometer. While the field-depen-
dent transitions showed linewidths dv of about
2 kHz, due to residual field inhomogeneities
and hum, it was possible to reduce that of the
only weakly field-dependent b transition to as
low as 10 Hz.
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