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Table III. Legendre-polynomial expansion coeffic-
ients for the Yo*(1520) decay distributions in the ener-
gy range 1740 to 1780 MeV with respect to the produc-
tion normal (I=Q~A~P~(cock), where cosC =)t R. and
@=Z x Yo*(1520)/~K x Y'0*(1520)~.

In conclusion, our data indicate the existence
of the Y', *(1765)hyperon resonance with M= 1760
+ 10 MeV, F = 60 MeV, and the unambiguous
spin-parity assignment &
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ity of the I',*(1765) is —,
'

The decay distribution of the Y,*(1520) allows
a further check on the spin-parity assignment
of the Y,"(1765). For ZP = 2+, a distribution
of 1+0.78P,(cos4') is expected, while for JP

, a distribution of 1-0.70P,(cos@) is pre-
dicted. Here we have cos@=n t+ in the Y',*(1520)
c.m. system, and n is the production normal
8 =K && Y', *(1520)/IK &: Y,*(1520)). In Fig. 3(b)
we present our experimental data; I egendre-
polynomial expansion coefficients are shown
in Table III. For E =1760+20 MeV, fits to the
theoretical distributions give )('(-, ) = 2.6 and

X'(2 ) = 242. 1 for nine degrees of freedom.
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QUANTUM NUMBERS AND MASSES OF MESONS AS QUARK-ANTIQUARK SYSTEMS
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The purpose of this note is (a) to make quan-
tum-number assignments and relate the masses
of mesons treated as a quark-antiquark (qq)
system, (b) to see if the SU(6) [or U(6)C8IU(6)]

type mass splittings of the 8 =0, 1 (35+1)
mesons remain for the higher mesons, and

(c) to relate mesons to the (qq) Regge trajec-
tories.

The implications of SU(6) for quark models
and in regard to a quark mass Mq

~ 10 Beg have
been discussed by Nambu, ' I.ipkin, ' and others.
Gell-Mann' has derived the orbital angular mo-
mentum I of quarks' from a current algebra
supplementing the SU(6) with intrinsic quark
parity, U(6)C8)U(6), with OL(3). [See also Ma.—

hanthappa, and Sudarshan. ']
In Table I we relate the quantum numbers

and masses of mesons according to the (qq)
sys tem. The internal dynamics is taken non-
relativistic, though the essential features most
likely remain valid' in a relativistic discussion.
The assignments are quite unambiguous. For
B(1220), experimentally j~ 1, P = 'P, G = +.
The (qq) with L =1, S=0 gives J G =1++ where-
as L = 2, S = 0 would contradict O'„L = 2, S = 1

would give too many unobserved nearby mesons
with JP =3, 2, 1 . The A, (1324) is consis-
tent with L =1, S = 1 (qq), but also with $ =0+,
L =2, e.g. , for qqqq. The mass changes in
Table I are cohsistent with changes in L, S,
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and J of (qq).
The splitting of JP=0, 1, 2 (SPO, BP„3Pa)

states is assumed due to spin-orbit and tensor
(qq) potentials VLS(r)L S+Vt(x)SI2. The VLS
and Vt may depend on similar regions of r and
could contribute equally. Their effect on me-
son m's are taken to first order. Then

b, m = sa[J(J+ 1)—L(L+ 1)-S(S+1)],
L,S

&» b[(2s, s, + 2)L'-2(S L)—3(S L)']
t (2L + 3)(2L-1) (2)

Table I though the existence of the A, resonance
is now uncertain. ' Missing mesons of the I, = 1,
S = 1, 35-piet are shown in square brackets in
the table based on Eq. (3). Though not certain,
f(1253) is assumed to be e", rather than y".
The cp predictions are less reliable than others.
They involve additional assumptions (Ref. 6
and below).

With the above a and b, the unsplit 'P masses
(i.e., before any first-order effect of VLS and

Vt) are obtained as

a = ] 77+ 20 MeV and b = 171+20 MeV.

These values are very reasonable in view of

(3)

The a and b are spin-orbit and tensor interac-
tion (qq) parameters. To this order J, J„L,
S remain good quantum numbers. The second-
order effect of VtS12 (e.g. , on 'S,) is neglected.

Fitting Eqs. (1) and (2) to 'P, [K*'(1410)]—'P,
x[~(725)] and to 'P, [A, (1072)], one gets

m('P; T = 1, Y' = 0) = 1164+ 40 Me V,

m ('P' T = —' I' =+1)= 1250+ 40 MeV.

In examining SU(6) or U(6)8U(6) symmetry
breaking within a given L we now use Eqs. (4)
and (5) (for L =1) along with the 'P, mesons
in the table. For L =0, the broken SU(6) m'
splitting of S= 0, S=1 depends on S(S+1) as
well as SU(6) quantum numbers in b,m'(T, Y,
C, "', Ot, 5).' The S(S+1) term is shown by

(4)

(5)

Table I. Meson assignments. (Predicted mesons shown in [].)

SU(6) Regge
or Spectroscopic trajectory 6 Parity

L U(6) 8 U(6) S SU (2)8 SU (2) J notation (see text) = (—1)
Mes ona

(MeV)

1
35

1
35

1
8

'8+'1

1
18

38+ 31

0
0

0+

1s
0

is
0

1g
'pi

Sp

3p
1

A'

A
X (959)
~{138)
K(496)
q(549)
p(769)

K*(891)
~ (783)

g (1020)
[X' (1640+ 170)]

B(1220)
K (1215+ 15)

E (1420)
[e (640+ 4O)]

& {725)
[f' (567+ 40) &u'?]

[4"(835 + 60)]
& (1072+ 8)c

[K* (1158y 40)]
[f(1000+ 20); 2)'?]
[y' (1268+ 60)]

A2(1324+ 9)
K*' (1410+ 10)

f (1252+ 20) [~"?]
[(',t)" (1520+ 60)]b&

aData from A. H. Rosenfeld, A. Barbaro-Galtieri, W. H. Barkas, P. L. Bastien, J. Kirz, and M. Roos, Univer-
sity of California Radiation Laboratory Report No. UCRL-8030, Pt. I, (unpublished).

bSee Ref. 10.
See, however, Ref. 7.
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$=0, L=J; J =0, 1+, 2

$=1, L=J' J =1, 2, ~ ~,
P

(A)

(B)

$=1 ) I =J+1; PJ = 0 1 I ~ ~ (c)

$=1, L=J-1; J =1, 2, 3, ~ ~ -.P

In (D), the missing J =0+ would correspond
to the L =-1 "nonsense term. "" In Table I,
'S, (0 ) and 'P, (1+) lie on (A), the 'P, (1+) and
sPo(0 ) are alone, and 'S, (1 ) and sP, (2+) lie
on (D). The 0 and 1+ on (A) would further
split with respect to "signature, " (-1)L, as
would 1 and 2 on (D). However the AmL da-
ta above indicate I(-1)LVexchj to be small
((300 MeV), if any. No two trajectories of (A)
and (B) are expected to be pa, rallel because of

(D)

Kuo and Radicati to come from V$s1.s2 and
bm' from simultaneous spin-unitary spin ex-
change forces, VSU, on a quark model of bary-
ons. The entire SU(6) pattern for L =0, 35+1
should repeat for L =1 unless V$ and VSU de-
pend on x quite strongly. For L = 0, 6m[ S(p)
-'S(m)] = 630 MeV; for L = 1, b, m ['P(unsplit n )
-'P, (B)]—= 0. Similarly, for L = 0, gm[sS(K~)
-'S(K)] =395 MeV, vs L =1, hm[3P(unsplit K)
-'P(K )]=—0. Thus broken SU(6) splittings of
the S(S+1) type disappear for L x 0 indicating
a strong r dependence of p's(r) (especially for
r- 0). Additional exchange forces involving
L, U, and S could also be involved, however.
More detailed calculations' show the other (e
and f terms of Bdg and Singh') SU(6)-type split-
tings to remain. "

The unsplit [Eqs. (4), (5)] L =0 to L =1 ex-
citation energy of a 35-piet is b,mL =614+ 150
MeV (ordinary average of 'S and 'S) or b,mL
= 510+ 70 MeV (s, s, splitting only of 'S and
SS). Without regard to S=0, S= 1 splittings,
bmL(S =0) =850+ 115 MeV and hmL(S = 1) =380
+ 40 Me7. These values are consistent with
an M&o 10 Beg and ~,-10 "cm. Along with
Eqs. (1) to (3) they also show that L =2, S=O, 1

(qq) states would most likely lie above 1600
Me&, only JP =1 possibly getting into the re-
gion of observed mesons. The missing L = 1,
SU(6) singlet X' is placed at 1640+ 170 MeV
using EmL 510 or 850 MeV."

The above (qq) system gives the following
Regge trajectories over the real L axis (bound

states; L=0, 1, 2, ~ ~ ~ ) for fixed U(6)cgIU(6)
quantum numbers:

spin-unitary spin mixing of SU(6).
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A general mass formula based on (qq) dynamics and
for generalization of SU(6)-type splittings is given in
detail in Ref. 6. Considerations based on these give an
unsplit m(3P; y-like) = 1360+40 MeV6 from which by
Eqs. (1)-(3), a q" (1520+60), a y'(1268+60), and a
y'(835+ 60) follow. For completeness these too are in-
cluded in Table I.

i It has been pointed out that in addition to Mahanthap-
pa and Sudarshan [Ref. 5; see also K. T. Mahanthappa
and E. C. G. Sudarshan, Phys. Rev. Letters 14, 458
(1965)l, E. Borchi and R. Gatto tPhys. Letters 14, 352
(1965)] have also discussed the 35 I = 1 supermultiplet.
The former authors assign P = (—1)L, the latter P =+1.
Both are phenomenological rather than based on a de-
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tailed dynamics (see also H,ef. 6) of the (qq) system.
They consider tensors of an abstract group to get sym-
metry breaking and only I'8 to split J= 0, 1, and 2.
The detailed assignments and mass predictions differ
considerably from the present one. The SU{6) singlets
and ~(n', I ) dependence of mass on dynamical quan-
tum numbers are not considered. While the present

papers were at journals, further work on 35L =1 treat-
ed as U(12) kinetic supermultiplets with various phe-
nomenological mixing effects [R. Gatto, I.. Maiani, and
G. Preparata, Phys. Rev. 140, 91579 (1965)j has also
appeared.

~2See, for example, 8,. G. Newton, The Complex J
Plane (Ql. A. Benjamin. , Inc. , New York, 1964).
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The purpose of this Letter is to point out that
two of the most important properties of com-
plex angular momentum —the property of gen-
eralizing integral or half-integral angular mo-
mentum, and the property of characterizing
the asymptotic behavior of the S matrix in the
crossed channel —can be obtained from group-
theoretical arguments. '

Qur procedure is to construct an $ matrix
invariant under the complex inhomogeneous
Lorentz group (ICLG) 2 That it is natural to
do so follows fr om the fact that if the S matr ix
satisfies certain analyticity requirements, the
Bargmann-Hall-Wightman theorem' guarantees
that invariance under the Poincard group im-
plies invariance under ICLG. To the best of
our knowledge, there is no reason to believe
the 8 matrix not to be invariant under ICLG.

Assuming the S matrix to be invariant under

ICLG, it is then useful io construct the irre-
ducible representations of this group. ' Because
ICLG is not a symmetry group —only the Poin-
card group 5', a subgroup of ICLG, is a sym-
metry group —we are free to construct nonuni-

tary representations of ICLG, as long as a
state which corresponds to a physical-particle
transforms under a unitary representation of
(p

A state of an irreducible representation of
ICLG is characterized by a, complex momen-
tum Il& =P&+i@& with complex "mass" M'

=If&II~. For a given D&, the state transforms
under an irreducible representation of the little
group for the corresponding mass. For M gO,
the little group is the homogeneous Lorentz
group, whose irreducible representations are
labeled by y=(p;n), a pair consisting of the
complex number p and the integer n. It is y

which plays the role of complex angular mo-
mentum.

A single, spinless "particle" is described
by the state with the transformation property

T(o, A ) ~II ) =exp[iRe(II o. )]IA II ),
v 1 p. v

(~, A ")C ICLG.
V

Under the Poincard group, it transforms uni-
tarily by'

T(a, I. ) jP +zQ )
v jL $, 1

=exp[i(P a )]ll P +iL Q ),
V V

(a, L, ")CP.
V

The two-particle state

III i) Ie [II ) = iII ', ll )
p 1 p, 1 p.

'
IL'

can be reduced. In the center-of-mass system,
it has total momentum

=11 '+ll '=(ll ', ll)+(II ', -II)=(11 '+ll ', 5),
IL( p 0' 0' 0 O'

"mass" 81~2 = [II II~]1~2, and it contains allp.
"spins" y. Thai is, for every y there exists
a projection operator A& such that

X ill ', ll ') = ~ll;g' '),
X 9 9 P X

a state which transforms according to the ir-
reducible representation [8'", X] of ICLG. g'"
is the complex rotation which takes a vector
in the z direction into the direction G.


