terpretation of the (R+V) function. The variables are now the momenta, and

$$R_{kp'} \equiv \int V_{kq} 8\pi M q^2 dq T_{qp'}^{(2)},$$

with Lovelace's normalization<sup>4</sup> and M as the reduced mass. Then

$$T_{kp} = T_{pk} = \frac{R_{kp} + V_{kp}}{1 - \int (R_{kq} + V_{kq}) 8\pi M q^2 dq / (k^2 - q^2 + i\epsilon)},$$

and

$$\mathrm{Im}T_{pk}^{-1} = \frac{V_{kk}^{+R} + R_{kk}}{V_{kb}^{+R} + R_{kb}} (4\pi^2 M k).$$

This resembles the usual on-shell unitarity equation with a modification to k. Some other aspects of this work, including the relevance to bootstrap dynamics, will be discussed later.

I am grateful to Dr. R. J. Eden for first drawing my attention to the Bethe-Salpeter equation, and to Dr. I. J. R. Aitchison and Dr. I. T. Drummond for some very helpful comments.

<sup>3</sup>R. Sawyer, <u>Seminar on Theoretical Physics, Trieste, 1962</u> (International Atomic Energy Agency, Vienna, 1963), p. 340.

<sup>4</sup>C. Lovelace, Phys. Rev. <u>135</u>, B1225 (1964).

## SPIN-PARITY DETERMINATION OF THE $Y_1^*(1765)^{\dagger}$

Robert B. Bell, Robert W. Birge, Yu-Li Pan,\* and Robert T. Pu‡

Lawrence Radiation Laboratory, University of California, Berkeley, California (Received 21 October 1965; revised manuscript received 13 December 1965)

Measurements of the  $K^-p$  total cross section at about 1-BeV/c incident- $K^-$  momenta have shown a broad and asymmetric peak.<sup>1</sup> Further investigations led Barbaro-Galtieri, Hussain, and Tripp to suggest that two hyperon resonances with spin  $\frac{5}{2}$  exist in this energy region—one an I=0 resonance at an energy about 1815 MeV with positive parity, the other, I=1 at about 1765 MeV and negative parity.<sup>2</sup> In this paper, we present data from the reaction  $K^- + n - \Sigma^ + \pi^+ + \pi^-$  which confirms that the  $Y_1*(1765)$  exists and that the reported spin-parity assignment,  $\frac{5}{2}^-$ , is correct.<sup>3</sup>

This study is based on 2100 of our events which fit the hypothesis  $K^- + n \rightarrow \Sigma^- + \pi^+ + \pi^-$ . This particular reaction has the advantage of being pure I=1 and having all pions visible; thus no effects from the strongly produced  $Y_0^*(1815)$  are present. The data were obtained from a separated  $K^-$  beam in the Lawrence Radiation Laboratory's new 25-inch bubble chamber filled with deuterium. The incident  $K^$ momenta were 828, 930, 1025, and 1112 MeV/c which, neglecting Fermi momentum, corresponds to a  $K^-$ -n c.m. energy of 1700 to 1845 MeV.

In Fig. 1 we present the  $\Sigma^{-}\pi^{+}$  invariant-mass distribution at various  $K^{-}n$  c.m. energies. It is evident that the reaction  $K^{-}+n \rightarrow \Sigma^{-}+\pi^{+}+\pi^{-}$ 



FIG. 1. Invariant mass of the  $\Sigma^{-}\pi^{+}$  system produced in the reaction  $K^{-} + n \rightarrow \Sigma^{-} + \pi^{+} + \pi^{-}$ .

<sup>&</sup>lt;sup>1</sup>H. P. Noyes, Phys. Rev. Letters <u>15</u>, 538 (1965).

<sup>&</sup>lt;sup>2</sup>K. L. Kowalski, Phys. Rev. Letters <u>15</u>, 798 (1965).

is\_dominated by production of the well-known  $J^P = \frac{3}{2}$ ,  $Y_0 * (1520)$  hyperon resonance. This leads us to look for the presence of the  $Y_1$ \*(1765) in the cross section for the process  $K^{-} + n$ -  $Y_0$ \*(1520) +  $\pi^-$ . Because of the deuteron Fermi momentum, a given incident  $K^-$  momentum gives rise to a range of  $K^{-n}$  total c.m. energies. Nevertheless, it is interesting to look at the cross section for our reaction at each beam momentum. Figure 2(a) shows the cross section for  $K^- + n \rightarrow Y_0^*(1520) + n^-$ , assuming that the neutron in the deuteron is free. Here, as throughout this paper, we define the  $Y_0^*(1520)$ by the condition that the invariant mass of the  $\Sigma^{-}\pi^{+}$  system be in the range  $1520 \pm 25$  MeV; the results of our analysis are not sensitive to the exact choice for the  $Y_0^*(1520)$  width. Despite the considerable overlap in total  $K^{-n}$ c.m. energies between the various beam momenta, an enhancement is clearly indicated in the



region of 930 MeV/c, or 1760-MeV  $K^{-}n$  c.m. energy.

One can go further. Knowing the deuterium wave function, the path length for each momentum, and values of the beam momenta, one can predict the expected distribution of  $K^-n$  c.m. energies. In Fig. 2(b), we plot the ratio of the number of experimental events to the area under the expected distribution curve for the intervals indicated for the reaction  $K^- + n$  $\rightarrow Y_0^*(1520) + \pi^-$ ; the enhancement around 1760 MeV is apparent. An examination of our data yields the resonance parameters M = 1760 $\pm 10$  MeV and  $\Gamma = 60$  MeV, the width being very dependent on the assumed background.

If, as it appears, the  $Y_1$ \*(1765) decays into



 $\cos \phi_{decay}$ 

FIG. 2. (a) Cross sections for the reaction  $K^- + n \rightarrow Y_0^*(1520)\pi^-$  at various incident momenta. (b) Ratio of the number of experimental events to the area under the theoretical  $K^-n$  c.m. energy distribution curve for the reaction  $K^- + n \rightarrow Y_0^*(1520) + \pi^-$ .

FIG. 3. (a) Production angular distributions for the  $Y_0^{*}(1520)$ . (b) Decay angular distribution of the  $Y_0^{*}(1520)$  with respect to the production normal.

 $Y_0^*(1520) + \pi^-$ , we have an excellent means to determine its spin and parity. At these energies the nonresonating pion travels an average of 10 F during a  $Y_0^*(1520)$  mean life; therefore, it is plausible to consider the channel to be dominated by the two-step process  $K^- + n \rightarrow Y_0^*(1520) + \pi^-$  followed by the decay  $Y_0^*(1520) \rightarrow \Sigma^- + \pi^+$ .

Since the  $Y_0^*(1520)$  has  $J^P = \frac{3}{2}^-$ , the reaction  $K^- + n - Y_0^*(1520) + \pi^-$  does not suffer from the Minami ambiguity associated with  $0 + \frac{1}{2} \rightarrow 0 + \frac{1}{2}$ processes. Also, it allows a lower decay orbital angular momentum and thus a simpler decay distribution. Following arguments similar to those of Minami,<sup>4</sup> we observe the following: If the  $K^{-n}$  system forms a  $Y_1 * (1765)$  resonance with a spin and parity of  $\frac{5}{2}$ , it can decay into  $Y_0^*(1520) + \pi^-$  via a P- or F-wave orbital state. Since the higher orbital angularmomentum state is associated with a higher centrifugal barrier, decay via P wave is greatly favored. For such decay of the  $Y_1$ \*(1765), the production angular distribution of the  $Y_0 * (1520)\pi^-$  system is expected to be  $1 + 2\cos^2\theta$ or  $1+0.8P_{2}(\cos\theta)$ , where  $P_{2}(\cos\theta)$  is the Legendre polynomial of order two, and  $\cos\theta$  $=\hat{K}^{-}\cdot\hat{\pi}^{-}$ .

Figure 3(a) shows the angular distribution of the  $Y_0^*(1520)$  for events with total  $K^-n$  energies in the indicated intervals. As we have done in considering the production cross sections, the events from various  $K^-$  momenta have been summed and redivided according to the total c.m. energy of the constrained  $Y_0^*(1520)\pi^-$  system.

We have fitted these angular distributions to the Legendre polynomial expansion  $I = \sum_n A_n P_n(\cos\theta)$ ; the expansion coefficients are presented in Table I for various  $K^{-n}$ c.m. energy intervals. In the range  $1760 \pm 60$ MeV, expansion to  $P_2(\cos\theta)$  is both necessary and sufficient to fit the experimental data. For the particular choice  $E = 1760 \pm 20$  MeV,  $\chi^2$  for a fit to  $1+0.8P_2(\cos\theta)$  is 6.4 for nine degrees of freedom.

To see whether another spin and parity assignment of the  $Y_1$ \*(1765) can give rise to a similar angular distribution and whether a reasonable background can explain the small deviation from the  $1+0.8P_2(\cos\theta)$  distribution expected for a pure  $\frac{5}{2}$  resonance decaying via pure P wave, we present in Table II the contributions of various partial-wave amplitudes, up to  $J = \frac{5}{2}$ . A thorough examination of Table II shows that only a dominant  $(\frac{5}{2}P)$  partial wave with a small  $(\frac{3}{2}+S)$  background can yield angular distributions in good agreement with the observed data. No other reasonable combination of partial-wave amplitudes can yield a similar distribution. In particular, a pure resonance of spin and parity  $\frac{5^+}{2}$  decaying via *D* wave would yield a distribution  $1 + 10 \cos^2 \theta$ -10  $\cos^4\theta$ . Fitting our data to this distribution gives  $\chi^2 = 26.2$  for  $E = 1760 \pm 20$  MeV. In fact, we have also checked the contribution from  $J = \frac{7}{2}$  partial-wave amplitudes which is too cumbersome to be included in Table II. Again no other reasonable combination of partial-wave amplitudes can fit our experimental distribution.

We make another observation about the reaction  $K^- + n \rightarrow \Sigma^- + \pi^+ + \pi^-$ . If the  $Y_1 * (1765)$ is  $\frac{5}{2}^+$ , both the  $Y_0 * (1405)\pi^-$  and  $Y_0 * (1520)\pi^$ channels will decay by D wave. The larger Q value in the  $Y_0 * (1405)\pi^-$  channel would favor it over the  $Y_0 * (1520)\pi^-$  channel. However, if the  $Y_1 * (1765)$  is  $\frac{5}{2}^-$ , it must decay into  $Y_0 * (1405) + \pi^-$  by F wave, while it may decay into  $Y_0 * (1520) + \pi^-$  by P wave. Centrifugalbarrier arguments would then favor  $Y_0 * (1520)$ production, even though that channel has a lower Q value. Figure 1 shows dominant  $Y_0 * (1520)$  production and suppressed  $Y_0 * (1405)$ production, indicating again that the spin-par-

Table I. Legendre-polynomial expansion coefficients for the  $Y_0^*(1520)$  production angular distributions,  $I = \sum_n A_n P_n(\cos\theta)$ , at various  $K^-n$  c.m. energies.

| E <sub>Kn</sub><br>range | Coefficients                      |                  |                 |                 |                 |                  |  |  |
|--------------------------|-----------------------------------|------------------|-----------------|-----------------|-----------------|------------------|--|--|
| (MeV)                    | $A_0$                             | A <sub>1</sub>   | $A_2$           | $A_3$           | $A_4$           | $A_5$            |  |  |
| 1700 to 1740             | $1.00 \pm 0.12$                   | $-0.22 \pm 0.24$ | $0.66 \pm 0.32$ | $0.11 \pm 0.40$ | $0.10 \pm 0.42$ | $-1.26 \pm 0.51$ |  |  |
| 1740 to 1780             | $1.00 \pm 0.07$                   | $-0.08 \pm 0.13$ | $0.69 \pm 0.16$ | $0.26 \pm 0.21$ | $0.02 \pm 0.24$ | $0.09 \pm 0.31$  |  |  |
| 1780 to 1820             | $1.00 \pm 0.07$                   | $-0.01 \pm 0.14$ | $0.63 \pm 0.18$ | $0.21 \pm 0.23$ | $0.12 \pm 0.25$ | $0.41 \pm 0.33$  |  |  |
| 1820 to 1860             | $\textbf{1.00} \pm \textbf{0.09}$ | $0.26 \pm 0.16$  | $0.50 \pm 0.22$ | $0.06 \pm 0.26$ | $0.47 \pm 0.30$ | $-0.16 \pm 0.38$ |  |  |

| Partial   |                      | Inter-  |      |                       |                |        |      |                |
|-----------|----------------------|---------|------|-----------------------|----------------|--------|------|----------------|
| amplitude | $_{I}P_{I}$          | ference | ٨    | 4                     | Coeffi         | cients |      |                |
| term      | J L                  | terms   | A0   | <i>A</i> <sub>1</sub> | A <sub>2</sub> | A_3    | A4   | A <sub>5</sub> |
| 1         | $(\frac{1}{2} P)$    |         | 0.56 |                       |                |        |      |                |
| 2         | $(\frac{1}{2}^{+}D)$ |         | 0.56 |                       |                |        |      |                |
| 3         | $(\frac{1}{2}^{+}D)$ |         | 1.1  |                       |                |        |      |                |
| 4         | $(\frac{3}{2}^+S)$   |         | 1.1  |                       |                |        |      |                |
| 5         | $(\frac{3}{2} P)$    |         | 1.1  |                       | -0.9           |        |      |                |
| 6         | $(\frac{3}{2} F)$    |         | 1.1  |                       | +0.9           |        |      |                |
| 7         | $(\frac{5}{2} P)$    |         | 1.7  |                       | 1.4            |        |      |                |
| 8         | $(\frac{5}{2} F)$    |         | 1.7  |                       | 1.1            |        | -0.7 |                |
| 9         | $(\frac{5}{2}^{+}D)$ |         | 1.7  |                       | 0.7            |        | -1.7 |                |
| 10        | $(\frac{5}{2}^+G)$   |         | 1.7  |                       | 1.7            |        | 0.93 |                |
|           |                      | (2,1)   |      | 1.1                   |                |        |      |                |
|           |                      | (3,1)   |      | -1.6                  |                |        |      |                |
|           |                      | (3,2)   |      |                       | -1.6           |        |      |                |
|           |                      | (4,1)   |      | 1.6                   |                |        |      |                |
|           |                      | (4,2)   |      |                       | 1.6            |        |      |                |
|           |                      | (4,3)   |      |                       | -2.3           |        |      |                |
|           |                      | (5,1)   |      |                       | -0.7           |        |      |                |
|           |                      | (5,2)   |      | -0.7                  |                |        |      |                |
|           |                      | (5,3)   |      | 1.0                   |                |        |      |                |
|           |                      | (5,4)   |      | 0.8                   |                | -1.8   |      |                |
|           |                      | (6,1)   |      |                       | 2.1            |        |      |                |
|           |                      | (6,2)   |      | 2.1                   |                |        |      |                |
|           |                      | (6,3)   |      |                       |                | -3.0   |      |                |
|           |                      | (6,4)   |      | 0.6                   |                | 2.4    |      |                |
|           |                      | (6,5)   |      |                       | -1.4           |        |      |                |
|           |                      | (7,1)   |      |                       | -2.6           | 0.0    |      |                |
|           |                      | (7,2)   |      | 0.7                   |                | -2.6   |      |                |
|           |                      | (7,3)   |      | 3.7                   |                |        |      |                |
|           |                      | (7,4)   |      | -0.74                 | 1 6            | -3.0   |      |                |
|           |                      | (7,5)   |      |                       | 1.7            |        | 4 17 |                |
|           |                      | (7,6)   |      |                       | 0.24           |        | -4.7 |                |
|           |                      | (8,1)   |      |                       | 2.1            | 0.1    |      |                |
|           |                      | (0,2)   |      |                       |                | 2.1    |      |                |
|           |                      | (0,3)   |      | 26                    |                | -3.0   |      |                |
|           |                      | (0,4)   |      | 5.0                   | 1 6            | -0.8   | 9.0  |                |
|           |                      | (8, 6)  |      |                       | 1.0            |        | -2.9 |                |
|           |                      | (8,0)   |      |                       | -1.4           |        | -36  |                |
|           |                      | (0,1)   |      |                       | -1.4           | -13    | -5.0 |                |
|           |                      | (0, 1)  |      |                       | -1.3           | 1.0    |      |                |
|           |                      | (9, 3)  |      |                       | 1.8            |        |      |                |
|           |                      | (9, 4)  |      |                       | 1.3            |        | -3.1 |                |
|           |                      | (9, 5)  |      | 3.4                   |                | -2.6   |      |                |
|           |                      | (9,6)   |      | -0.5                  |                | -1.9   |      |                |
|           |                      | (9,7)   |      | 0.6                   |                | 2.4    |      |                |
|           |                      | (9,8)   |      | 0.55                  |                | 1.8    |      | -4.8           |
|           |                      | (10, 1) |      |                       |                | 3.1    |      |                |
|           |                      | (10,2)  |      |                       | 3.1            |        |      |                |
|           |                      | (10,3)  |      |                       |                |        | -4.4 |                |
|           |                      | (10,4)  |      |                       | 1.3            |        | 3.2  |                |
|           |                      | (10,5)  |      |                       |                | -2.0   |      |                |
|           |                      | (10,6)  |      | 4.0                   |                | 2.0    |      |                |
|           |                      | (10,7)  |      |                       |                | -0.5   |      | -6.7           |
|           |                      | (10,8)  |      | 0.4                   |                | 2.0    |      | 3.5            |
|           |                      | (10,9)  |      |                       | -1.0           |        | -2.5 |                |

Table II. Partial-wave-amplitude contributions to the  $Y_0^*(1520)$  production angular distribution  $I = \sum A_N P_N(\cos\theta)$ .  $(J^P, L)$  implies decay from a state of spin and parity  $J^P$  via L wave.

Table III. Legendre-polynomial expansion coefficients for the  $Y_0^*(1520)$  decay distributions in the energy range 1740 to 1780 MeV with respect to the production normal  $(I=\sum_{K}A_K P_K(\cos\Phi))$ , where  $\cos\Phi = \hat{n}\cdot\hat{\pi}$  and  $\hat{n} = K^- \times Y_0^*(1520)/|K^- \times Y_0^*(1520)|$ .

|                  |                    | Theoretical value |      |  |
|------------------|--------------------|-------------------|------|--|
| Coefficient      | Experimental value | 2                 | 2    |  |
| $A_0$            | $1.00 \pm 0.07$    | 1.0               | 1.0  |  |
| $A_1$            | $-0.03 \pm 0.09$   | 0                 | 0    |  |
| $\overline{A_2}$ | $-0.91 \pm 0.13$   | -0.7              | 0.78 |  |
| $\overline{A_3}$ | $0.06 \pm 0.17$    | 0                 | 0    |  |
| $A_4$            | $0.04 \pm 0.21$    | 0                 | 0    |  |
| $A_5$            | $-0.07 \pm 0.29$   | 0                 | 0    |  |

ity of the  $Y_1^*(1765)$  is  $\frac{5}{2}^-$ .

The decay distribution of the  $Y_0^*(1520)$  allows a further check on the spin-parity assignment of the  $Y_1^*(1765)$ . For  $J^P = \frac{5}{2}^+$ , a distribution of  $1+0.78P_2(\cos\Phi)$  is expected, while for  $J^P$  $=\frac{5}{2}^-$ , a distribution of  $1-0.70P_2(\cos\Phi)$  is predicted. Here we have  $\cos\Phi = \hat{n}\cdot\hat{n}^+$  in the  $Y_0^*(1520)$ c.m. system, and  $\hat{n}$  is the production normal  $\hat{n} = K^- \times Y_0^*(1520)/|K^- \times Y_0^*(1520)|$ . In Fig. 3(b) we present our experimental data; Legendrepolynomial expansion coefficients are shown in Table III. For  $E = 1760 \pm 20$  MeV, fits to the theoretical distributions give  $\chi^2(\frac{5}{2}^-) = 2.6$  and  $\chi^2(\frac{5}{2}^+) = 242.1$  for nine degrees of freedom. In conclusion, our data indicate the existence of the  $Y_1$ \*(1765) hyperon resonance with  $M = 1760 \pm 10$  MeV,  $\Gamma = 60$  MeV, and the unambiguous spin-parity assignment  $\frac{5}{2}^{-}$ .

We would like to thank the crew of the new 25-inch hydrogen bubble chamber for their successful operation of the chamber during its initial run. Thanks go also to the Bevatron crew, the data-reduction group under H. S. White, and the scanners and measurers under Paul W. Weber. The authors are grateful to the other members of the Powell-Birge group for their assistance and useful discussions.

†Work done under the auspices of the U. S. Atomic Energy Commission.

\*Present address: Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania.

<sup>‡</sup>Present address: Department of Physics, University of California, Riverside, California.

<sup>1</sup>O. Chamberlain, K. M. Crowe, D. Keefe, L. T. Kerth, A. Lemonick, Tin Maung, and T. F. Zipf, Phys. Rev. 125, 1696 (1962).

<sup>2</sup>A. Barbaro-Galtieri, A. Hussain, and R. D. Tripp, Phys. Letters <u>6</u>, 296 (1963).

<sup>3</sup>The  $Y_1^*(1765)$  has been observed in the reaction  $K^-$ + $p \rightarrow Y_0^*(1520) + \pi^0$  by R. Armenteros <u>et al.</u>, Phys. Letters <u>19</u>, 338 (1965). They quote  $M = 1755 \pm 10$  MeV,  $\Gamma = 105 \pm 20$  MeV, and  $J^P = \frac{5}{2}^-$ .

<sup>4</sup>S. Minami, Nuovo Cimento <u>31</u>, 258 (1964).

## QUANTUM NUMBERS AND MASSES OF MESONS AS QUARK-ANTIQUARK SYSTEMS

## Oktay Sinanoğlu\*†

Center for Theoretical Studies, University of Miami, Coral Gables, Florida (Received 6 December 1965)

The purpose of this note is (a) to make quantum-number assignments and relate the masses of mesons treated as a quark-antiquark  $(q\bar{q})$ system, (b) to see if the SU(6) [or U(6) $\otimes$ U(6)] type mass splittings of the  $J^P = 0^-$ ,  $1^-$  (35+1) mesons remain for the higher mesons, and (c) to relate mesons to the  $(q\bar{q})$  Regge trajectories.

The implications of SU(6) for quark models and in regard to a quark mass  $M_q \gtrsim 10$  BeV have been discussed by Nambu,<sup>1</sup> Lipkin,<sup>2</sup> and others. Gell-Mann<sup>3</sup> has derived the orbital angular momentum  $\vec{L}$  of quarks<sup>4</sup> from a current algebra supplementing the SU(6) with intrinsic quark parity, U(6) $\otimes$ U(6), with O<sup>L</sup>(3). [See also Mahanthappa and Sudarshan.<sup>5</sup>]

In Table I we relate the quantum numbers and masses of mesons according to the  $(q\bar{q})$ system. The internal dynamics is taken nonrelativistic, though the essential features most likely remain valid<sup>6</sup> in a relativistic discussion. The assignments are quite unambiguous. For B(1220), experimentally  $J \ge 1$ , P = ?, G = +. The  $(q\bar{q})$  with L = 1, S = 0 gives  $J^{PG} = 1^{++}$  whereas L = 2,  $S = 0^-$  would contradict G; L = 2,  $S = 1^$ would give too many unobserved nearby mesons with  $J^P = 3^-$ ,  $2^-$ ,  $1^-$ . The  $A_2(1324)$  is consistent with L = 1, S = 1  $(q\bar{q})$ , but also with  $S = 0^+$ , L = 2, e.g., for  $qq\bar{q}\bar{q}$ . The mass changes in Table I are consistent with changes in L, S,