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terpretation of the (R+V) function. The va.riables are now the momenta. , and

R, = JV 8vMq dqTkp' kq qp'

with Lovelace's normalization~ and M as the reduced mass. Then

kp kp
+V

kp k I-f(R + V )8mMq2dq/(k -q'+ie)
kq kq

ImT ' = (4w Mk).
kp kp

This resembles the usual on-shell unitarity equation with a modification to k. Some other aspects of
this work, including the relevance to bootstrap dynamics, will be discussed later.
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Measurements of the K P total cross section
at about 1-BeV/c incident-K momenta have
shown a broad and asymmetric peak. ' Further
investigations led Barbaro-Galtieri, Hussain,
and Tripp to suggest that two hyperon resonances
with spin 2 exist in this energy region —one an
I=0 resonance at an energy about 1815 MeV
with positive parity, the other, I=1 at about
1765 MeV and negative parity. ' In this paper,
we present data from the reaction K +n -Z
+ ~++ w which confirms that the I',*(1765) ex-
ists and that the reported spin-parity assign-
ment, 2, is correct. '5

This study is based on 2100 of our events
which fit the hypothesis K +n —Z + ~++ ~

This particular reaction has the advantage of
being pure I= 1 and having all pions visible;
thus no effects from the strongly produced
I;*(1815)are present. The data were obtained
from a separated K beam in the Lawrence
Radiation Laboratory's new 25-inch bubble cham-

ber filled with deuterium. The incident K
momenta were 828, 930, 1025, and 1112 MeV/c
which, neglecting Fermi momentum, corres-
ponds to a K -n c.m. energy of 1700 to 1845
MeV.

In Fig. 1 we present the Z r+ invariant-mass
distribution at various K n c.m. energies. It
is evident that the reaction K +n —Z + m++ w
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FIG. 1. Invariant mass of the Z 7t system produced
in the reaction K +n Z + 7|++ 7l
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is dominated by production of the well-known
J = 2, I'a*(1520) hyperon resonance. This
leads us to look for the presence of the Y,e(1765)
in the cross section for the process K +n
—I;*(1520)+w . Because of the deuteron Fer-
mi momentum, a given incident K momentum
gives rise to a range of K n total c.m. ener-
gies. Nevertheless, it is interesting to look
at the cross section for our reaction at each
beam momentum. Figure 2(a) shows the cross
section for K +n —I'a*(1520)+n, assuming
that the neutron in the deuteron is free. Here,
as throughout this paper, we define the I'a*(1520)
by the condition that the invariant mass of the
Z r+ system be in the range 1520+ 25 MeV;
the results of our analysis are not sensitive
to the exact choice for the Y,*(1520)width.
Despite the considerable overlap in total K n

c.m. energies between the various beam momen-
ta, an enhancement is clearly indicated in the

1700&E„„&1740MeY 8 -EKn -I820MeY

region of 930 MeVic, or 1760-MeV K n c.m.
energy.

One can go further. Knowing the deuterium
wave function, the path length for each momen-
turn, and values of the beam momenta, one can
predict the expected distribution of K n c.m.
energies. In Fig. 2(b), we plot the ratio of the
number of experimental events to the area un-
der the expected distribution curve for the in-
tervals indicated for the reaction K +n
—Ya*(1520)+m; the enhancement around
1760 MeV is apparent. An examination of our
data yields the resonance parameters M = 1760
+ 10 MeV and I" = 60 MeV, the width being very
dependent on the assumed background.

If, as it appears, the I;*(1765)decays into
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FIG. 2. (a) Cross sections for the reaction K +n
Yp~(1520)77 at various incident momenta. (b) Ratio

of tne number of experimental events to the area un-
der the theoretical K n c.m. energy distribution curve
for the reaction K +n —Yp*(1520)+7r
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FIG. 3. (a) Production angular distributions for the
Yp+(1520). (b) Decay angular distribution of the
Yp*(1520) with respect to the production normal.
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Y,*(1520)+w, we have an excellent means
to determine its spin and parity. At these en-
ergies the nonresonating pion travels an av-
erage of 10 F during a Y,*(1520) mean life;
therefore, it is plausible to consider the chan-
nel to be dominated by the two-step process
K +n —Yo*(1520)+ w followed by the decay
Yo*(1520)—Z + w+.

Since the Y,*(1520)has J = 2, the reaction
K +n- Yo*(1520)+w does not suffer from the
Minami ambiguity associated with 0+ & -0+ 2

processes. Also, it allows a lower decay or-
bital angular momentum and thus a simpler
decay distribution. Following arguments sim-
ilar to those of Minami, 4 we observe the follow-
ing: If the K n system forms a Y,*(1765) reso-
nance with a spin and parity of —', , it can de-
cay into Y,*(1520)+m via a P- or F-wave or-
bital state. Since the higher orbital angular-
momentum state is associated with a higher
centrifugal barrier, decay via P wave is great-
ly favored. For such decay of the Y,*(1765),
the production angular distribution of the
Y,*(1520)m system is expected to be 1+2cos'8
or 1+0.8P,(cos8), where P,(cos8) is the Le-
gendre polynomial of order two, and cos6)
=K 7r

Figure 3(a) shows the angular distribution
of the Yo*(1520) for events with total K n en-
ergies in the indicated intervals. As we have
done in considering the production cross sec-
tions, the events from various K momenta
have been summed and redivided according
to the total c.m. energy of the constrained
Yo*(1520)s system.

We have fitted these angular distributions
to the I egendre polynomial expansion
I=+~&„P„(cos8); the expansion coefficients
are presented in Table I for various E n

c.m. energy intervals. In the range 1760+ 60
MeV, expansion to P,(cos8) is both necessary
and sufficient to fit the experimental data'.

For the particular choice E = 1760+ 20 MeV,
X' for a fit to 1+0.8P,(cos8) is 6.4 for nine
degrees of freedom.

To see whether another spin and parity as-
signment of the Y,*(1765) can give rise to a
similar angular distribution and whether a rea-
sonable background can explain the small de-
viation from the 1+0.8P2(cos8) distribution
expected for a pure 2 resonance decaying via
pure P wave, we present in Table II the con-
tributions of various partial-wave amplitudes,
up to J = 2. A thorough examination of Table II
shows that only a, dominant (2 P) partial wave
with a small (—, S) background can yield angu-
lar distributions in good agreement with the
observed data. No other reasonable combin-
ation of partial-wave amplitudes can yield a
similar distribution. In particular, a pure
resonance of spin and parity & decaying via
D wave would yield a distribution 1+10cos'8
-10cos 0. Fitting our data to this distribution
gives X'=26.2 for F. =1760+ 20 MeV. In fact,
we have also checked the contribution from
J = -', partial-wave amplitudes which is too cum-
bersome to be included in Table II. Again no
other reasonable combination of partial-wave
amplitudes can fit our experimental distribu-
tion.

We make another observation about the re-
actionK +n-Z +w++m . If the Y,*(1765)
is 2, both the Y,*(1405)w and Y,*(1520)m
channels will decay by D wave. The larger
Q value in the Yo*(1405)m channel would fa-
vor it over the Y,*(1520)s channel. However,
if the Y,*(1765) is —, , it must decay into

Y,*(1405)+m by F wave, while it may decay
into Yo*(1520)+m by P wave. Centrifugal-
barrier arguments would then favor I;*(1520)
production, even though that channel has a
lower Q value. Figure 1 shows dominant

Y,*(1520) production and suppressed Y *(1405)
production, indicating again that the spin-par-

Table I. Legendre-polynomial expansion coefficients for the 1'0*{1520)production angular distributions,

I=+„+P„(cos8), at various K n c.m. energies.

&Zn
range
{MeV) A(

Coefficients
A2 A3

1700 to 1740
1740 to 1780
1780 to 1820
1820 to 1860

1.00 + 0.12
1.00 + 0.07
1.00 + 0.07
1.00 + 0.09

-0.22 + 0.24
—0.08+ 0.13
—0.01+0.14

0.26+ 0.16

0.66 ~ 0.32
0.69~ 0.16
0.63 + 0.18
0.50 + 0.22

0.11+0.40
0.26 + 0.21
0.21+ 0.23
0.06 + 0.26

0.10 + 0.42
0.02 + 0.24
0.12+ 0.25
0.47 ~ 0.30

-1.26 + 0.51
0.09+ 0.31
0.41+ 0.33

-0.16+ 0.38
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Table II. Partial-wave-amplitude contributions to the Fo"{1520)production angular distribution I=QA~P~{cos8).
(J&,L) implies decay from a state of spin and parity JP via I wave.

Partial
amplitude

term

1
2
3

5
6
7
8

9
10

(3 p)

(— +}
(5+3)

Inter-
ference
terms Ao

0.56
0.56
1.1
1.1
1.1
1.1
1.7
1.7
1.7
1.7

Coefficients
A2 A3

-0.9
+0.9

1.4
1.1
0.7
1.7

-0.7
10 7
0.93

{2,1)
(3, 1)
{3,2)
{4,1)
(4', 2}
(4, 3)
(5, 1)
(5, 2)
(5, 3)
(5 4)
(6, 1)
(6, 2)
(6,'3)
(6 4)
(6, 5)
(7, 1)
(7.'2)
(7, 3)
{7,4)
(7, 5)
(7, 6)
(8,'1)
(8,'2)
(s, 3)
(8, 4)
(s, 5)
(8,'6)
(S, 7)
(9, 1)
(9, 1)
(9, 3)
(9, 4)
(9,'5)
(9.6)
(9,'7)
(9, 8)
(1o, 1)
(1O, 2)
(1o, 3}
(10,4)
(1o, 5)
(1o, 6)
(1o, 7)
(1o, 8)
(10, 9)

1.1
—1.6

1.6

-0.7
1.0
0.8

2.1

0.6

3.7
—0.74

3.4
—0.5

0.6
0.55

4.0

0 4

-1.6

1.6
2o3

—0.7

2.1

-1.4
-2.6

1.7
-0.24

2.1

1.5
1.2

-1.4

-1.3
1.8
1.3

3.1

1.3

-1.8

-3.0
2.4

-2.6

-3.0

2.1
-3.0
-0.6

-2.6
-1.9

2.4
1.8
3.1

-2.0
2.0

—0.5
2.0

-4.7

-2.9
+2.9
-3.6

3 ~ 1

4 4
3.2

—4.8

—6.7
3.5
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Coefficient Experimental value
Theoretical value

5 5+
2 2

A()

Ag

A2

A3
A4

A5

1.00 + 0.07
-0.03+ 0.09
-0.91+0.13

0.06+ 0.17
0.04+ 0.21

-0.07 + 0.29

1.0
0

—0.7
0
0
0

1.0
0

0.78
0
0
0

Table III. Legendre-polynomial expansion coeffic-
ients for the Yo*(1520) decay distributions in the ener-
gy range 1740 to 1780 MeV with respect to the produc-
tion normal (I=Q~A~P~(cock), where cosC =)t R. and
@=Z x Yo*(1520)/~K x Y'0*(1520)~.

In conclusion, our data indicate the existence
of the Y', *(1765)hyperon resonance with M= 1760
+ 10 MeV, F = 60 MeV, and the unambiguous
spin-parity assignment &

We would like to thank the crew of the new
25-inch hydrogen bubble chamber for their
successful operation of the chamoer during
its initial run. Thanks go also to the Bevatron
crew, the data-reduction group under H. S.
White, and the scanners and measurers under
Paul W. Weber. The authors are grateful to
the other members of the Powell-Birge group
for their assistance and useful discussions.

ity of the I',*(1765) is —,
'

The decay distribution of the Y,*(1520) allows
a further check on the spin-parity assignment
of the Y,"(1765). For ZP = 2+, a distribution
of 1+0.78P,(cos4') is expected, while for JP

, a distribution of 1-0.70P,(cos@) is pre-
dicted. Here we have cos@=n t+ in the Y',*(1520)
c.m. system, and n is the production normal
8 =K && Y', *(1520)/IK &: Y,*(1520)). In Fig. 3(b)
we present our experimental data; I egendre-
polynomial expansion coefficients are shown
in Table III. For E =1760+20 MeV, fits to the
theoretical distributions give )('(-, ) = 2.6 and

X'(2 ) = 242. 1 for nine degrees of freedom.
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The purpose of this note is (a) to make quan-
tum-number assignments and relate the masses
of mesons treated as a quark-antiquark (qq)
system, (b) to see if the SU(6) [or U(6)C8IU(6)]

type mass splittings of the 8 =0, 1 (35+1)
mesons remain for the higher mesons, and

(c) to relate mesons to the (qq) Regge trajec-
tories.

The implications of SU(6) for quark models
and in regard to a quark mass Mq

~ 10 Beg have
been discussed by Nambu, ' I.ipkin, ' and others.
Gell-Mann' has derived the orbital angular mo-
mentum I of quarks' from a current algebra
supplementing the SU(6) with intrinsic quark
parity, U(6)C8)U(6), with OL(3). [See also Ma.—

hanthappa, and Sudarshan. ']
In Table I we relate the quantum numbers

and masses of mesons according to the (qq)
sys tem. The internal dynamics is taken non-
relativistic, though the essential features most
likely remain valid' in a relativistic discussion.
The assignments are quite unambiguous. For
B(1220), experimentally j~ 1, P = 'P, G = +.
The (qq) with L =1, S=0 gives J G =1++ where-
as L = 2, S = 0 would contradict O'„L = 2, S = 1

would give too many unobserved nearby mesons
with JP =3, 2, 1 . The A, (1324) is consis-
tent with L =1, S = 1 (qq), but also with $ =0+,
L =2, e.g. , for qqqq. The mass changes in
Table I are cohsistent with changes in L, S,


