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Ferrell, in Proceedings of the First Eastern Theoreti-
cal Physics Conference, University of Virginia, 1962,
edited by i'. E. Rose (Gordon and Breach Publishers,
Inc„New York, 1963), p. 53.

BP. A. M. Dirac, The Principles of Quantum Mech-
anics (Oxford University Press, New York, 1958),
4th ed.

This division in Hilbert space takes the place of the
configuration-space boundary of the signer-Eisenbud
R-matrix theory, and has the advantage that it does
not disturb the optical potential scattering.

It follows immediately that if there is present an

optical potential which produces by itself a phase shift
60, then the total phase shift is 60+ 6, where 6 is given
by Eq. (10). The resulting cross section will then have
an over-all non-Lorentzian interference shape, as
well as fine structure.

BThe analog states studied by P. Richard, C. F.
Moore, D. Robson, and J. D. Fox I.Phys. Rev. Letters
13, 343a (1964); see also D. Robson, Phys. Rev. 137,
B535 (1964)], seexn to fall in this category as the hall-
way-state theory would not predict the observed dis-
appearance of fine structure on the high-energy side
of the resonance.
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The energies of members of the ground-state
rotational band of even-even deformed nuclei
can be represented by the expansion

for not too large va, lues of the angular-momen-
tum quantum number I. Formulas were derived
earlier by one of the authors' for the moment
of inertia 8 and the coefficient S by consider-
ing rotating solutions of the Hartree-Fock-
Bogoliubov equations. Under the model assump-
tion that nucleons interact through pairing and
quadrupole forces, the moment of inertia 4
was shown to agree with the formula of Beliaev, '
which has previously been numerically evalu-
ated by Nilsson and Prior. In the present
paper numerical computations of the S coeffi-
cient are presented for the first time. This
coefficient may be decomposed as follows:

S=S . . +S +S +S +Coriolis 6 ~ g y

The rather complicated expressions for these
terms will not be reproduced here, since they
are defined by Eqs. (29), (61), (68), and (74)
of Ref. 1. The term SCo»olis alone can be
derived from a fourth-order perturbation treat-
ment of the cranking model applied to indepen-

dent quasiparticles, with both the self-consis-
tent field and gap parameters h„and hp held
fixed. The term S~ arises from the weakening
of the pair correlation, i.e., to a decrease in
the neutron and proton gap parameters + and

6& due to rotation, with the self-consistent field
held fixed (Mottelson-Valatin effect at low ro-
tational frequenctes4). The term S& is a, small
contribution which arises from a readjustment
of the Lagrange multipliers X„and Ap neces-
sary to keep the numbers of neutrons and pro-
tons fixed in the presence of the Coriolis per-
turbation. The terms Sg and S arise from
the centrifugal stretching of the self-consistent
field and include changes in A„and b& due to
changes in the nuclear quadrupole moments.
One may interpret SI3 as corresponding to mix-
ing of the ground-state band with the g-vibra-
tional band and S& as corresponding to mixing
with the y-vibrational band.

The expressions corresponding to Eq. (2)
were evaluated on the IBM 7094 computer us-
ing a code developed by one of the authors
(J.B.M.). In the calculations, the average field
in the absence of rotation was furnished by the
Nilsson potential. ' All the Nilsson single-par-
ticle levels from oscillator quantum number
N = 0 through N = 7 were used, with modifica-
tions recommended by Mottelson and Nilsson. '
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It was found convenient to use the correspond-
ing single-particle eigenfunctions computed
by Rassey in cylindrical coordinates. v ' The
deformation of the Nilsson potential was mea-
sured by the parameter g = ~(m~0') '(Pr'1'»),
i.e., a parameter proportional to the total mass
quadrupole moment of neutrons and protons„
which was chosen so as to exactly reproduce
the experimental electric quadrupole moments.
The strength of the quadrupole-quadrupole force,
~, which was assumed to be the same for neu-
tron-neutron, proton-proton, and neutron-pro-
ton interactions, was chosen so as to guaran-
tee Hartree self-consistency at the chosen
deformation P. The parameter ~ may be writ-
ten as z=k4wmu. o (3ARo ) '. Simple estimates,
some based on the pure harmonic-oscillator
potential, give k=1 and 5+0=412 '" MeV, if
the nuclear rms radius Ro is chosen to have
the experimental value. ' " The a,ctual values
of k which mere used ranged from 0.VV to 0.8V

in the rare-earth region and from 0.82 to 0.8V

in the actinide region, using the above estimate
or S&0

The strengths of the neutron-neutron and pro-
ton-proton pairing forces, G„and Gp, respec-
tively, were chosen so as to exactly reproduce
the values of h„and Lp extracted from exper-
imental data by Nilsson and Prior. 3 As usual,
a cutoff on the pairing force was used. It was
assumed that the pairing force scatters nucleons
in single-particle states lying within a region
of width 8+0 symmetric about the chemical po-
tentials. This gave the values in the rare-earth
region G+A = 20-22 MeV and GpA =27-29 MeV,
while in the actinide region G„A =19-21 MeV
and GpA = 24-27 MeV were obtained.

The stability of the self-consistent solutions
was checked by computing the force constant
for P oscillations, Cp [see Eq. (78a) of Ref. 1].
U Cp& 0, the stationary solutions are unstable,
while if Cp&0, the solutions are stable. " Un-
fortunately, in the rare-earth region instabi1. ity
wa. s obtained for Sm'" Sm"~, Gd"~ and Gd'5'

while Gd'" was near the bound of instability.
A]l other rare earths were stable. In the ac-
tinide region C p & 0 only for Th ', which may
be a transitional nucleus. At the beginning of
a region of deformed nuclei, Cp is small and
its calculation, which involves the difference
of two large numbers, is very sensitive to the
choice of parameters and single-particle po-
tential. The instabilities may also reflect the
inadequacy of the quadrupole and pairing forces.

The results of the calculation of the coeffi-
cient are presented in Table I. The corre-
sponding moments of inertia have also been
recalculated and generally agree well with those
of Nilsson and Prior. ' The small differences
are accounted for by the differences in the de-
tails of the calculations, for example, differ-
ent choices of P.

The total theoretical S values in the rare-
earth region exceed the experimental values
by factors of 2-4. However, the situation is
not really as bad as it would appear. Since
the theoretical values of h'/2d generally exceed
the experimental ones, the fact that the theo-
retical S coefficients are too large in magni-
tude and negative in sign means that the rota-
tional energies calculated from Eq. (1) will
be in better agreement with experiment than
if the calculated S coefficients were smaller.
Also, the theoretical expression for N is pro-
portional to (5'/2a')', so any change in the choice
of parameters, like the gap parameters, which
brings the moment of inertia into line with ex-
periment is likely to reduce the coefficient
in magnitude. However, for Hf"', the theo-
retical and experimental moments of inertia
nearly coincide, but the theoretical S value
is still about twice the experimental one in
magnitude.

In the actinide region, the calculated values
of K'/2d are only slightly larger than the ex-
perimental ones, and the calculated S coeffi-
cients are considerably closer to the experi-
mental ones.

The most interesting result of the calcula-
tions is that most of the contribution to is
due, not to the vibration-rotation interaction
terms Sp and S&, but to SCoriolis and S~.
A possible interpretation of the latter terms
is that they correspond to an additional term
in the nuclear Hamiltonian like (SCortol;s+S~)
x(I'-1,')', which would provide an I'(I+1)' con-
tribution to the energy without, however, mix-
ing physical bands. '3 In most phenomenologi-
cal treatments of rotational motion, it has been
assumed that vibration-rotation band mixing
(centrifugal distortion), which seems to cor-
respond to the terms Sp and S in the present
model, account for all of the deviation from
the I(I+1) rule in even-even nuclei. Actually,
recent analyses of experimental branching ra-
tios, assuming band mixing, indicate that S&
and Sp account for only a small fraction (&10%)
of the total coefficient, "&" in qualitative
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Table I. Theoretical moments of inertia and I coefficients. The total theoretical coefficient is the sum
=SCoriolis+~+(By+p+I&. The experimental I coefficients are obtained from the ground-state band using at
least the 2+, 4+, and 6+ states. The values of are not given for the cases with unstable self-consistent solu-P
tions.

Nucleus

K'/2s
0 eV)

Theory Experiment Coriolis

Contributions to -s, theory
(eV)

-Ig -Sy -Ip

-8,
Experiment

(eV)

Sm'"
Sm'"
Gdi54

Gdi58

Gdi58

Gdi60

0 i60

D i62

i64

Eri84

Eri86

Eri68
Er170

m '70

fbi 72

Hfi78

Hfis'
Wi82

wis4
Wi88

Th228

Th228

Th230

Th232

Th234

U232

U 234

U236

U238

pu238

Vu"'
Cm'44

30.8
21.6
31.9
21.5
17.8

16.2
20.2
17.6
15.8
17.8
15.9
15.3
14.7
15.5
14.4
14.1
15.0
16.2
18.5
18.7
20.6
24.2
9.61
8.66
7.84
7.08
6.41
7.11
6.37
6.29
6.11
5.71
5.63
5.88

21.4
13.9
21.6
15.0
13.3

12.7
14.6
13.5
12.3
15.4
13.5
13.3
13 4
14.0
13.2
12.8
14.8
15.6
15.6
16.8
18.7
20.7
12.3
9.70
8.87
8.36
8.00
7.98
7.29
7.59
7.50
7.38
7.18
7.16

77.8
33.0
86.5
35.0
18.2

16.9
28.1
19.9
16.4
20.8
17.1
11.0
11.5
13.3
11.2
12.7
16.8
17.8
18.2
18.2
35.2
53.2
9.20
5.79
3.95
2.64
1.98
3.00
2e23
1.78
1.98
1.49
1.68
1.22

47.8
26.8
51.1
27.8
16.9

15.6
27.4
20.8
19.9
23.4
21.4
17.7
18.6
19.5
17.7
17.1
20.8
24.6
27.6
31.5
31.1
30.1

3o37
2.96
2.92
2.97
2.89
2.59
3.08
2.53
2.44
2.18
2.05
1.55

-0.7
-0.01
-1.0
-0.1
-O.l

-0.2
-0.1
-0.2
-0.03
-0.2
—0.003
-0.02
-0.004
-0.1
-0.06
-0.3
-0.5
-1.0
-0.8
-0.5

2 ~ 2
-4.7
-0.92
-0.50
-0.21
-0.03
-0.006
-0.08
-0.01
-0.002
-0.01
-0.003
-0.015
-0.03

unstable
unstable
unstable
unstable
barely
stable

6.9
24.9
6.8
2.1
9.7
3.3
3.6
6.1
5.8
64
2.4
4,8
3.0
6.8
6.9
8.5

14.2
unstable

8.40
1.20
0.31
0.18
0.62
0.11
0.03
0.02
0.006
0.004
0.01

4.1
1.0
5.4
1.3
0.6

0.5
1.4
0.8
0.4
0.7
0.4
0.2
0.15
0.2
0.1
0.1
0.2
0.3
0.7
0.9
1.9
3.6
0.07
0.04
0.03
0.02
0.02
0.02
0.01
0.01
0.01
0.01
0.008
0.004

39.7
81.7
48.1
38.7
54.5
42.1
32.5
36.3
38.6
35.3
32.1
42.0
44.7
52.4
57.0
74.6
96.3

16.69
7.88
5.91
5.06
6.15
5.42
4.35
4.43
3.68
3.73
2.75

193
37

193
28.8
14.2

19
24.7
10.8
9.82

14.5
5.6

8.93

18.5
12.9
10.5
15.3
28.3

20

8.8

7.0
6.97
6.9
6.2
4.1
5.6
2.1

agreement with the present calculations. How-
ever, our calculated values of I& are an order
of magnitude smaller than the not-too-accur-
ate experimental values in most cases.

It is interesting to note that the ordinary crank-
ing model, which neglects the changes in the
gap parameters and self-consistent field, pro-
vides only the contribution SCoriolis, which
agrees fairly well with the experimental val-
ues of I in the rare-earth region. However,
the additional term Sg provided by the more
general theory spoils the agreement.

It is of some interest to consider the deriva-

192

tives dd/dP and dd/dy defined in Ref. I, which
enter into the calculations of SJ3 and Iy, re-
spectively. In Table II, there are presented
theoretical values of (p/25)dd/dg and (v 3/2S)
&&dd/dy. If the moment of inertia were to de-
pend on deformation through the relation
5 ~ 8' sin'(y —2v/3) as is assumed in many phe-
nomenological discussions of vibration-rota-
tion interaction, then the above ratios (evalu-
ated at the equilibrium deformation) would be
unity. However, the calculated microscopic
quantities are in most cases only 0.5 to 0.25.
Since Ip and S& depend on the squares of the
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derivatives, it is not surprising that our esti-
mates of the vibration-rotation interaction are

Table II. Theoretical derivatives of the moment of
inertia with respect to deformation. The derivative
with respect to P is taken with y held constant, but
with ~ and 4p and also A,„and Ap changing with p.
The derivative with respect to y is taken with all oth-
er parameters held constant. The parameters p and
y are defined by Q20=m~0 & p cosy and Q22=Q2

2

= 2-"2ppg~02~-'p sing, where the Q2„are the total neu-
tron and proton mass quadrupole moments. For the
case a ~p sin (y—2m/3), (p/2a)ds/dp =( 3/2a)ds/dy= 1,
if the derivatives are evaluated with y= 0 {axial sym-
metry). The calculated derivatives are independent of
the parameter z.

Nucleus
p d~
2~ dP

Sm'"
Smi54
Gdi54

Gdi56

Gd158

Gd
Dyi60

yi62

Dyi64

Er"4
Eri66
Er"'
Er'"
Yb'"
Ybiz2

Yb'"
HfiZ6

Hfiz8

Hf
W182

W"4
W"6
Th226

Th228

Th230

Th234

U232

U 234

U236

U23

pu238
240

Cm'44

0.237
0.274
0.228
0.262
0.285
0.294
0.250
0.269
0.282
0.261
0.276
0.276
0.268
0.268
0.276
0.275
0.260
0.244
0.234
0.230
0.219
0.216
0.202
0.205
0.210
0.219
0.211
0.226
0.221
0.232
0.234
0.237
0.242
0.280

1.145
0.862
1.097
0.800
0.574
0.458
0.674
0.547
0.403
0.634
0.489
0.566
0.767
0.647
0.740
0.502
0.594
0.465
0.568
0.534
0.501
0.489
0.680
0.538
0.434
0.316
0.306
0.410
0.249
0.155
0.137
0.083
0.069

—0.143a

0.623
0.548
0.653
0.588
0.558
0.539
0.604
0.570
0.500
0.538
0.465
0.372
0.322
0.339
0.268
0.290
0.312
0.369
0.448
0.470
0.561
0.608
0.234
0.217
0.218
0.231
0.222
0.222
0.212
0.228
0.218
0.222
0.207
0.173

aThe fact that da/dp is negative gives the anomalous
result that P decreases with rotation. This result
may be a consequence of the gap in the single-particle
spectrum at neutron number 152. It also is possible
that if oscillator shells beyond + = 7 are included, one
would obtain a small positive derivative.

s ignificantly smaller than phenomenological
estimates.

The present calculations are only tentative.
The possibility of other choices of parameters,
and the effect of including the contribution of
the pairing force to the self-consistent field,
which was omitted in the calculations (but were
included in the derivations in Ref. l), are be-
ing studied. Finally, a more general applica-
tion of the time-dependent Bar tree -Fock-
Bogoliubov theory, including the collective
vibrations dynamically, is being applied to the
problem by one of the authors.

*Work performed under the auspices of the U. S.
Atomic Energy Commission.
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TOTAL CROSS SECTION FOR 14-MeV NEUTRONS USING ALIGNED '"Ho NUCLEI

H. Marshak and A. C. B. Richardson*

National Bureau of Standards, Washington, D. C.

Oak Ridge National I aboratory, Oak Ridge, Tennessee
(Received 21 December 1965)

%e have mea, sured the effect of nuclear de-
formation on the total cross section of x65Ho

using 14-MeV neutrons and an aligned target.
This is an extension of our previous work' done

with neutrons of energy 0.35 MeV, in which the

data were explained very nicely in terms of
the nonadiabatic coupled-channel calculation
(NACC). ' Since the energy is high in the pres-
ent case, we should be able to use the adiabatic
coupled-channel calculation (ACC).' As is shown

below, the present experimental data are indeed
well explained by this calculation.

The aligned '"Ho target wa. s obtained by cool-
ing a, metal single crystals to 0.33'K using the
National Bureau of Standards 'He refrigerator.
The atomic moments in this temperature re-
gion are canted out of the basal plane of the

hcp lattice by a small angle (-10') and form
a periodic spiral spin structure. ' Owing to
the large hyperfine interaction a high degree
of nuclear alignment' (f, =0.31 for 0.33'K) is
obtained for each group of nuclei whose atom-
ic moments lie along a common axis. There
al e perhaps 12 of these axes lying essentially
in the basal plane. This degeneracy (of having
more than one alignment axis) can be removed

by lining up the atomic moments with a rnag-
netic field. In the presence of a field we have
not only an aligned target, but a polarized tar-
get a: well. However, in the present experi-
ment we require only nuclear alignment. Since
we restrict ourselves to a total cross-section
measurement, we do not have to remove the
degeneracy of having many alignment axes in

the basal plane as long as this plane is perpen-

dicular to the beam direction. '
The '"Ho single crystal used in these mea-

surements, although rather large for a rare-
earth metal crystal, was nonetheless small
when considered as a nuclear target for 14-
MeV neutrons. The available area of the crys-
tal (-1 cm') and its thickness (1.08 cm) put

stringent requirements on the source of 14-
MeV neutrons used; namely, a well collimated
small beam with inherent high counting stabil-
ity. The last requirement was needed because
the change in transmission due to nuclear align-
ment was expected to be rather small. A fine-
ly collimated beam of 14-MeV neutrons was
obtained by careful collimation of the alpha
particle produced in the reaction 'H(d, n)'He
and by detecting it in fast coincidence with its
associated neutron. The coincidence alpha pulse
provides the accurate and stable neutron nor-
malization required. The National Bureau of
Standards 2-MV Van de Graaff was used to pro-
vide a 1-p.A, 300-keV deuteron beam. Thin
Ti-T targets (175 pg/cm') were used as the
neutron source.

The total cross section of unoriented '"Ho
was measured using two polycrystalline sam-
ples, with the same beam and detector condi-
tions as those used for the cryogenic target
measurements. This geometry was not opti-
mum for a, transmission measurement (the in-
scattering corrections were rather large), but

was tolerated since we wanted to make these
measurements under the same conditions as
those needed for the aligned-target ones. The
in-scattering correction was made using a the-


