
VOLUME 16, NUMBER 5 PHYSI C A I. R K V I E W I.E T T K R S 31 JxNUxRv 1966

ORIENTATION ORDER IN SOLID ORTHO-Hmt

John C. Raich and Hubert M. James

Department of Physics, Purdue University, Lafayette, Indiana
(H,eceived 3 January 1966)

Past attempts'~ to provide a theory of the
ordering of the molecules in solid ortho-H~
have for the most part been based on the as-
sumption that the molecular lattice is rigid,
of fcc or hcp form, and that the orientational
coupling of the molecules arises from a quad-
rupole-quadrupole coupling. Recent x-ray'
and infrared experiments~ have indicated that
the phase transition in solid ortho-H3 is accom-
panied by a change in the form of the molecu-
lar lattice from fcc in the low-temperature
phase to hcp in the high-temperature phase.
If this is correct, a complete theoretical dis-
cussion of the transition will be complicated
by changes in the free energy associated with
the change in the molecular lattice. It is not
the purpose of this Letter to give a full discus-
sion of this transition, but to point out that pre-
viously existing treatments based on the fixed-
moleeular-lattice model are deficient in that
the assumed equilibrium molecular orientations
are not self-consistent, or are restricted to
consideration of excessively simple types of
orientational ordering. It will be shown that
a variational treatment of the molecular order-
ing in solid ortho-H~ that is self-consistent
within the framework of the internal-field ap-
proximation leads to the calculation of free
energies decidedly lower than those previous-
ly calculated for either fixed-lattice model.

The Hamiltonian for the model to be consid-
ered is

H =Q.H. (Q.)+-,Q.Q.V. .(Q., Q.),

where H is the rotational energy of a rigid ro-
2

tator that represents a hydrogen molecule with
fixed center of gravity, 0; = (t3z, y~) describes
the orientation of the molecule on site i, and

Vzj is the potential energy of interaction of
molecules i and j.

In the internal-field approximataon, one treats
each molecule i as subject to a fixed effective
field U~(QI) that represents its interactions
with the other molecules. This effective field
determines a set of orthonormal stationary-
state functions g& that occur with probabilities
P&2 independently of the states of the other mole-

cules in the crystal. Given the U'(Q~), one can,
in principle, determine the g's by solving

(II +U ).g = e
2 ILL J p

and construct a corresponding set of crystal
wave functions

2

)
=II.P

where (pj denotes a set of p, ; and

P = exp(-l3e )/Q exp(-l3e ).2 2 2

v V

Self-consistency requires, not only that the
g&' and P&' be derivable from the U'(Qf), but
that

(4)

where the sum is over all possible states of
all other molecules of the crystal. It can be
shown5 that

E =Q( )[gI)( )P( )+kTP( )InP( )]

is minimized, for given T or P, by g's and P's
that are self-consistent, and that F~ is still
an upper limit to the free energy F of a system
with Hamiltonian H at the temperature T. In
this sense, the g&~ and P&' determined by the
above equations are the most appropriate ones
for the description of the model. at temperature
T.

In the case of solid ortho-H„T is so low

and the orientational coupling is so small that
one can restrict attention to molecular orienta-
tional states for which J = 1 is a good approxi-
mate quantum number'. :

2 2
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If one computes F~ by summing over any such

that would occur, in a canonical ensemble, with
probabilities
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incomplete orthonormal set of functions, one
obtains an upper limit to I'". Minimization of

F~ to variation of the sets of c's and P's yields
that are correct zero-order solutions of

Eq. (2) (U' being considered as the perturba-
tion), e&' that are corresponding first-order
perturbed energies, and Pjj.~~ that satisfy Eq. (5)
when one sums over the finite set of states con-
sidered. For best results it is, however, es-
sential that the U' satisfy Eq. (6), and that the

g&' be correct zero-order functions for the
perturbation function U'. To assume that there
is an "axis of quantization, " the same for all
molecules, and that the y&' have the forms 1'„
or Y, ~„ is highly restrictive; it may be incom-
patible with self- consistency.

On the other hand, without further loss of
generality, one can restrict attention to rea. l
correct zero-order functions

2 2=Z 'Y

q, = (1/vZ)(-1 „+1, ,),
y, =(z/&2)(1 „+r, ,),

3= Y~o (10)

are axia. lly symmetric about the x, y, and z
axes, respectively, and the y&~2 are direction
cosines of the axis of symmetry of p&' with
respect to the (x,y, z) axes. By appropriately
defining the reference axes x,y, z for each in-
dividual molecule, one can ma, ke

(12)

=y (Q ).
JLL

The orientational distributions for the three
states of molecule i are then axially symmetric
about these g, y, z axes, and all have the same
form a,s ) Y yp I with respect to their various
symmetry axes. This is an immediate .conse-
quence of restricting attention to real p's with
J= 1, and is independent of T and the form of
the orientational coupling. These latter factors
do, however, determine the self-consistent
choices of the reference axes and P's.

The quadrupole-quadrupole interaction of
molecules i a,nd j can be expressed as

V = (20m/9)(70m)' 1 Q C(224;MN)
2jf ij MN

Here C(J',J,J;M,M, ) is a Clebsch-Gordan co-
efficient, ' a.nd

1" . . = 6e'q'/(25R . .'),
2j 2j

"

where Q is the effective molecular quadrupole
moment and g,j is the separation of the mole-
cular centers. If this is the only orientationa. l
coupling, it follows from the assumptions of
the preceding paragraph and from Eq. (12) that

U =~M'M'2M("'

with vM = (-1)(M+ jM j)/2v M, since U~ must
be real.

In applying these results to the case of ortho-
H~ molecules on a rigid fce lattice, one can
be guided by the known structure of the low-
temperature e phase of N~, in which there is
also a fcc molecular lattice and the orientation-
al couplings of the molecules have the charac-
ter of quadrupole-quadrupole coupling. ~o In
e-N, the molecules are distributed over four
simple cubic sublattices, with the molecules
on each sublattice directed along a different
threefold axis of the crystal; through the cen-
ter of each molecule there passes a, single three-
fold axis of the average charge distribution
of the rest of the crystal. " The four sublattices
are equivalent, except for orientation and trans-
lation in space. The space group is Pa3(Tf 8).
It is natural to assume that in fec ortho-H~,
the orientational distributions are axially sym-
metric about equilibrium configurations that
are similarly oriented, and that the sublattices
are similarly equivalent. These assumptions,
applied to molecules other than the ith, imply
that the average cha, rge distribution around
molecule i will have a simple threefold axis
of symmetry in the equilibrium direction as-
sumed to be characteristic of molecules on that
sublattice. This is consistent with Eq. (14) only
lf

U =~ 1 (fl.),

with the z2 axis along the threefold axis. From
this it follows that one of the P&' will have the
same axis of symmetry, while the other two

g&~ correspond to a twofold degenerate level
and together make a contribution to the aver-
age charge distribution that is axially symmet-
ric about the same axis. The derived charge
distribution of molecule i thus has the symme-
try assumed for other molecules on the same
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sublattice; assumed symmetries of the molec-
ular distributions are self-consistent. The
equivalence of the sublattices leaves only a
single potential constant Ko to be determined.
It also implies that for every molecule

Pj + P~ +P3 = 2Pq + P3 = 1,
2 2

(16)

in view of the degeneracies of the orientational
states g, ' and P2'. One can make a straightfor-
ward calculation of K~ and I"~ in terms of

p =1-P3. (17)

+kT[p lnp+(1-p) ln(l-p)-pln2].

The problem has then been reduced to the form
considered by Strhssler and Kittel. '~ Their
arguments lead to the conclusion that at T = 0
there is an ordered phase with P3=1. As 1'

increases, P, falls, reaching the value; at
a temperature Tc defined by kTc = -19I'/(4 ln2).
If I'/k= 065 '

OK,
' sTc=4.48'K. At this point

the rigid-lattice model undergoes a first-order
orientational transition as P» P» and P, abrupt-
ly assume the common value —,

' characteristic
of the orientationally disordered phase, which
is stable at all higher T. The numerical value
of -(19/3)1' obtained here for E~(T = 0)/N is
to be compared with the corresponding value
of -~~1 of Ref. 1, for the case of a fcc lattice
and for a simpler orientational ordering that
is self-consistent, but merely makes E~(T =0)
a local minimum that lies far above its abso-
lute minimum.

In the case of the hcp molecular lattice, there
is no similar guide in the treatment of ortho-H~,
since the molecular orientations in hcp P-Nm
have not been uniquely determined. However,
a classical discussion of the ordering of quad-
rupoles at zero temperature has been given
for a limited number of low-symmetry lattices. '~

Quantum-mechanical treatments of ortho-H,
with the same equilibrium orientations of the
molecules yield, for T =0, free energies F~

Neglecting all interactions except those between
nearest neighbors, one finds

E /N = -(19/3)I'[1-3p+ (9/4)p~]

that differ only by the factor 4/25. Of the struc-
tures considered in Ref. 14, that which yields
the lowest free energy has lattice symmetry
Pca2, . Generalizing the self-consistent quan-
tum-mechanical treatment of this structure
to higher T, one finds that molecular equilibri-
um orientations change with T, instead of being
constant, as in the case of the fcc lattice. The
Pca2, structure, treated with nearest-neighbor
interactions only, yields E~(T = 0)/N = -5.72I',
and undergoes a second-order transition to the
orientationally disordered phase at 4.50 K.
These values are to be compared with the cor-
responding values -1.125I' and 1.47'K, respec-
tively, of Ref. 2.

Though neither of the present treatments of
fixed-lattice models can be confidently compared
with experiment, they make clear the impor-
tance of self- consistency in the treatment of
or ientational ordering.
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