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tion.
The following empirical relation was proposed

by Toxen'.

/dH )
( dT JT H expt kT (3)

In Fig. 1, n 'F(a) is plotted as a function of
n for the range of interest. Also plotted are
the exPerimental Points of (dH-e/dT)T (Te/
H0)[b, (0)/kT&] ' vs b, (0)/kT&. The experimen-
tal data are those quoted by Toxen except for
more recent, dat;a on lead and niobium. Tox=
en's relation is shown in the figure by a dashed
line.

It can be seen that there is a reasonable agree-
ment between the experimental points and our
calculated curve, which is not surprising in
view of the known' insensitivity of Lewis's meth-
od to the precise form of C~ chosen. From
the figure we note that for n between 1.55 and
1.85, E(a) = n + 5%. This is the range within
which most experimental values of a lie. It
is our contention that this numerical property
of F(a) accounts for the correctness of Toxen's
relationship [Eq. (3)]. For o, &1.55 or n&1.85
we expect that (dH/dT)T (T /H0)[b, (0)/kT ]C
would follow our curve, and that they would

depart from the dashed line describing Toxen's
relation. The experimental points available
do show this trend, indicating, we believe, that
Toxen's relation is a numerical coincidence
(though a strikingly good one).
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Recently Lippmann, in this Journal, has
discussed the extension of the momentum-trans-
fer theorem'" to systems more complicated
than the (elastic or inelastic) collisions of elec-
trons with atomic hydrogen. Lippmann' also
discussed extensions of the theorem to other
observables, so as to derive, e.g. , an energy-
transfer theorem. In his discussion, Lippmann
took exception to some remarks concerning
the validity of the symbolic methods customar-
ily employed in scattering theory. These re-
marks, from a. preprint version of the paper
which proved the momentum-transfer theorem
for e-H collisions, were accurately quoted by
Lippmann, but do not appear in the actually
published paper, ' because I already had decided
the remarks were not wholly defensible. Nev-

ertheless there remain some differences be-
tween Lippmann's and my views of the status
of the momentum-transfer theorem and its
extensions. Making these differences explicit
is the primary objective of this Letter.

In Lippmann's derivation of the momentum-
transfer theorem, the starting point is

(e &+&, [p H-Hp ]e'+&),
1z 1z

(la)

the "expectation value" of the commutator be-
tween the Hamiltonian H and plz, the momen-
tum operator (along its incident direction) of
the incident particle. I ippmann relates (la)
to the momentum-transfer cross section via
symbolic methods. My starting point has been
much the same as Lippmann's, namely, the
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identity

(y (+) P H~T (+)) (ffy (+) P y (+)) —0
1z ' 1z

(lb)

On the other hand, I have chosen to evaluate
the integrals on the left side of (1b) in a par-
ticular representation, the coordinate repre-
sentation. In this representation, the terms
in (1b) independent of the potential V are re-
lated, via Green's theorem, to a surface inte-
gral at infinity, which then can be evaluated
from the known asymptotic behavior of 4 '+'

at large interparticle distances.
For the case of potential scattering, the

aforementioned surface integral reduces im-
mediately2 to the physical momentum-transfer
cross section, thus yielding the momentum-
transfer cross-section theorem. The situation
is less simple in e-H collisions, however,
wherein 4'+) must be symmetric (singlet scat-
tering) or antisymmetric (triplet scattering)

under interchange of r, and r2, the coordinates,
respectively, of the indistinguishable "initial-
ly incident" and "initially bound" electrons.
In this event, the surface integral (now over
the five-dimensional boundary of the sphere
at infinity in the six-dimensional space of r„r,)
reduces to the momentum-transfer cross sec-
tion plus terms proportional to fdrlyj*(rl)pl@
xyj(rl) integrated over all r„where pj is the
eigenfunction of atomic hydrogen in its jth bound

state. Such terms, discussed in connection
with Eqs. (G-42)-(G-44b), apparently are ab-
sent from' Eq. (L-6). But, because pz has odd

parity, these terms proportional to (yj, pzcpj)
vanish. At least superficially, therefore, I ipp-
mann's version of the momentum-transfer the-
orem for e-8 collisions agrees with mine.

Next, let p, ' replace pl+ in (la) and (1b).
Then proceeding from (1b) just as in Eqs. (G-36)-
(G-49), one finds for singlet or triplet e-H col-
lisions that the energy-transfer cross section
og is given by

0'.
—» ' dr V *(r» 'V (r )+)» dr ~ *(r )p 'V (r ), (2)

where the definition of a~ is

) (k '-k.')o. (k '-k "-k ")o.

In Eqs. (2) and (3), ko is the wave number of the incident electron; kj is the wave number of the out-

going electron after a collision leaving the atom in its jth bound state; k, ', k, ' are the wave vectors
of the out-going electrons when ionization occurs; 0 is the total cross section, including ionization;

g is the cross section (including direct and exchange processes) for collisions producing out-going

electrons with wave number kj& o'ion is the cross section for ionization, integrated over all allowed

values of k, ', k~', and the sums over j include elastic scattering, j=0. Of course,

k —k. = —,(e -e.),= 2m

0 j 8' 0
2 fg fQ 2m

k0 k1 -k2 S~ ~0 (4)

where ej is the (negative) energy of the jth bound state.
Equation (L-7) apparently lacks the last two terms in Eq. (2) above. These terms, which correspond

to the terms proportional to (y&, pzrpj) in the momentum-transfer theorem, now do not vanish because

p, ' has even parity. Thus, in the case of e-H collisions, Lippmann's result for the energy-transfer

theorem disagrees (superficially, at least) with the result of a detailed calculation in the coordinate

representation.
This apparent disagreement between Lippmann's and my version of the energy-transfer theorem

persists even when the particles 1 and 2 are considered distinguishable, i.e. , when 4 '+' is not sym-

metrized. To be specific, in this situation

E 2iko~
o = . dr%''+'*[4 '+'V V+2% V V 4''+'] —

2 2) o. 5'k —,dr q&. *(r )p 'y. (r )
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where Oj
xc is the exchange cross section for production of free particles 2, leaving the initially

free incident particle 1 in the jth bound state. In Eq. (5), because the particles now are distinguish-
able, v~ is defined not by Eq. (3) but rather by

fO

(v =
2 ) (k '-k. ')(v.—v. )+ dk 'dk '(k 2 —k '2)v. (k ', k ')

E ko 0 j j j „1 2 0 1 ion 1 ' 2

where the total ionization cross section (dijon
satisfies

Evidently Eq. (6) supposes that the kinetic
energies of outgoing free particles 1 only —not
of particles 2 —will be measured and compared
with the initially incident kinetic energy. Eq. (6)
is not the only physically sensible possible def-
inition of vE in (5), but no definition of v& will
eliminate the expectation values (y&, p'p&) in
the energy-transfer theorem unless such ex-
pectation values explicitly are incorporated
into the definition of oE. For actual e-H col-
lisions, involving indistinguishable particles,
Eq. (3) provides the only physically sensible
definition of OE.

The presence of the expectation values (y,
p'y ) in Eq. (5) is understandable. Whether
or not the particles are indistinguishable, i.e.,
whether or not 4''+' is symmetrized, the sur-
face integral arising from Eq. (1b) (with p, '
replacing pl+) represents the net flux of prob-
ability current —weighted by p, ' —across the
sphere at infinity in r„r, space; the presence
of forces, contained in the first term on the
right side of (5) or (2), causes this net weighted
flux to differ from zero. All collision process-
es, including those which convert 1 from a
free to a bound particle, are included in the
net probability current flux; but any physical-
ly sensible definition of vE, e.g. , Eq. (6) or
(3), corresponding to actually feasible measure-
ments, should involve the kinetic energy fluxes
of free (unbound) particles only. Consequent-

ly, only in the circumstances that particle 1

is always free, or that P,' is expected to van-
ish whenever particle 1 is not free, does one
expect vE of Eq. (6) to equal exactly the force
terms involving V on the right side of (5). In
fact, the extra terms in (5), proportional to
ojexch have precisely the form one expects
(in terms of the cross sections) for the rate
at which the forces are causing a flow of py'
from unbound to bound states of 1.

For actual e-H collisions, where the parti-
cles are indistinguishable, the precise form
of the extra terms involving (y&, P'y&) is less

IO

dr y.*(r )p 'y. (r ) =-e..2'- 1 j 1 1 j 1 j
Recalling Eqs. (3) and (4), using (7) converts
Eq. (2) to

(7)

dr@''+'*[4'+'v 'V+2V V. V 4''+']. (8)
1 2m

2~@,s @2 . 1 1 1

readily interpreted physically, but it is clear
that the genesis of these extra terms in (2) is
essentially the same as in (5). The preceding
pa, ragraph also clarifies the fact that the van-
ishing expectation values (y&, Pzy&) appear in
the derivation of the momentum-transfer the-
orem, and suggests that extra terms involving
the expectation values (y, Ay ) will have to be
included in the transfer eorem for any even-
parity operator A, e.g., the angular-momen-
tum transfer theorem, Eq. (1-8). However,
I have not examined the angular-momentum
transfer theorem, or the transfer theorem for
any other even-parity operator A, in the de-
tail that I have examined the energy-transfer
theorem.

It is to be noted that the presence of extra
terms involving (y&, Ay&) implies that the trans-
fer theorem for A —unlike the momentum-trans-
fer theorem —has little chance of being gener-
ally useful. For instance, granting exact knowl-

edge of V, prediction of v@ from (2) or (5) re-
quires accurate knowledge of oj and the asso-
ciated expectation values (p&, P'y&). Hence use
of (2) or (5) to estimate v@ generally will be
no easier or more accurate than direct employ-
ment of the corresponding defining equations
(3) or (6). For this reason the energy-trans-
fer theorem and similar obvious extensions of
the momentum transfer theorem were not in-
cluded in my paper on e-II collisions.

On the other hand, it is possible to eliminate
the extraterms ,involving (rp&, Ay&) in special
cases. One important such case is the energy-
transfer theorem for Coulomb interactions,
i.e., just the case for which (2) was derived.
In this case we know from the virial theorem
that
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Thus in the special case of e-H collisions there
is a useful energy-transfer theorem, but (su-
perficially at least) it differs by exactly a fac-
tor 2 from Lippmann's version. The result
(8) suggests that the energy-transfer theorem
remains useful —though differing by a numeri-
cal factor from Lippmann's version —in the
collisions of many-particle systems interact-
ing via Coulomb forces, e.g. , in atom-atom
collisions. The same comment should hold
for any collisions wherein the virial theorem
is applicable, e.g., to the collisions of many-
particle systems interacting via homogeneous
potentials of any degree n (if any case other
tha. n the Coulomb n = —l actually exists).

Admittedly the coordinate representation
proofs —of the momentum-transfer theorem
published previously, ' and of the energy-trans-
fer theorem outlined here —become awkward
and inelegant when extended to collisions more
complicated than e-H. By finding the route
to short elegant proofs for arbitrarily compli-
cated colliding systems, Lippmann has made
an important contribution therefore. This Let-
ter has indicated, however, that the symbolic

methods he employs must be made more pre-
cise before the extensions of the momentum-
transfer theorem to arbitrarily complicated
colliding systems, and to other observables,
can be regarded as more than "plausible. " In
particular (concentrating now on the energy-
transfer theorem), for many-particle systems
including both distinguishable and indistinguish-
able particles, it is at least necessary to es-
tablish (a) the connection between the right-
hand side of Eq. (L-7) and the physically sensi-
ble ()E, and (b) the presence of the extra terms
involving ((()&,p'p&), which are not obviously
explicitly manifested (though very likely con-
tained) in Eqs. (L-7) and (L-9).
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In this note, we wish to show that the gener-
alized Ehrenfest theorem' offers a new and

useful approach to the theory of multichannel
collisons. In particular, the theorem provides
a natural connection between the mathematical
and physical descriptions of the collision pro-
cess, and it enables the resolution of the scat-
tered amplitude in any channel to be effected
quite readily.

%e illustrate this by applying the theorem
to a collision process involving N channels.
The separation of the Hamiltonian in channel 1
and the basis vectors defined by this separa-
tion are

H II +V, H 4 F 4

Other channels are denoted by replacing the
subscript 1 by 2, 3, . . . , ¹

Assuming that channel 1 is the incident chan-

nel, the state vector is

(+) g& + 'V y (+) (2)
1

a, 1 . a, ]. E +is-H 1 a, 1
a 0, 1

The first term on the right corresponds to the
initial state; the scattered states are contained
in the second term. Physically, this equation
is interpreted as follows. It describes the scat-
tering of a wave packet having an energy spread
-& around Ea. As the wave packet is made long-

er, it becomes more nearly monoenergetic
(~-0).

The generalized Ehrenfest theorem examines
the rate of change, induced by a collision pro-
cess, in the expectation value, over a wave

packet, of an observable Ac, defined in chan-
nel c. By relating the rate of change to a cer-
tain closed expression, the theorem in essence
derives a sum rule for the process.

The expectation value of the rate of change
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