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In this Letter we.are reporting the first high-
energy measurements (1- to 6.3-GeV kinetic
energy) of neutron-proton elastic scattering
extending from the small-angle, diffraction-
peak region to the region beyond 90° in the cen-
ter-of-mass system. Previous high-energy
measurements’’? have concerned only elastic
neutron-proton scattering near 180° in the so-
called charge-exchange backward-peak region,
This experiment was carried out at the Beva-
tron of the Lawrence Radiation Laboratory
and used a neutron beam, spark chambers,
and a liquid-hydrogen target. There were three
objectives in this experiment: (1) to verify

the existence of the expected but hitherto un-
observed diffraction peak, to determine its
parameters, and to investigate possible shrink-
age; (2) to examine the differential cross sec-
tion at and beyond 90° in the center-of-mass
system, a region inaccessible in proton-pro-
ton scattering; (3) to look for the secondary
forward peak which appears in pion-proton
elastic scattering® »4 but not in proton-proton
elastic scattering.

The experiment involved a new technique
using a neutron beam containing neutrons of
all energies up to 6.3-GeV Kkinetic energy.
Neutrons, produced by the external proton beam
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of the Bevatron hitting a beryllium target,
were formed into a beam by a 15-foot-long
lead collimator set at 1° to the proton-beam
direction. Bending magnets removed charged
particles from the beam and lead plates reduced
gamma-ray contamination. From analysis

of the elastic events, the neutron spectrum
was found to peak at 5.0 GeV and two-thirds

of the neutrons which gave events had energies
above 4.0 GeV. Thus, this is a high-energy
beam and, in fact, the spectrum was more
favorable than expected.

The neutron beam with a diameter of 1.25
inches interacted in a 12-inch-long hydrogen
target as shown in Fig. 1. A system of thin-
plate spark chambers and a magnet were used
to detect the recoil proton from the elastic
scattering and to measure its angle and mo-
mentum. A set of seven spark chambers with
& -inch-thick stainless-steel plates was used
to detect the scattered neutron by its interac-
tions. The interaction or conversion of the
neutron appeared as a neutron star of one or
more prongs. The proton-detecting system
and the neutron-detecting chambers were both
on a circular rail centered on the hydrogen
target. With seven different settings of their
positions, all scattering angles at all energies
above 1 GeV were covered. The spark cham-
bers were triggered when a set of long, hori-
zontal, scintillation counters interspaced among
the neutron chambers and two long, horizon-
tal, scintillation counters, P, and P,, in the
proton system indicated that an approximate-
ly coplanar event had occurred.

The angle of the incident neutron was known
to 0.2 deg and the angle of the scattered neu-
tron, determined by the line from the interac-
tion point in the target to the conversion point
in the neutron spark chambers, was known to
+0.5 deg. These angles, combined with the
angle and momentum of the recoil proton, over-
determined an elastic scattering, and yielded
the incident neutron energy. The energy depen-
dence of the conversion efficiency of the neu-
tron spark chambers was measured by setting
up the apparatus for small-angle scattering
and triggering only with the proton-system
counters. At small angles the recoil proton
angle and momentum was sufficient by itself
to determine an elastic scattering. The frac-
tion of events which showed neutron conversion
in the neutron chambers then gave directly
the conversion efficiency. This efficiency was

1218

RAILS FOR
MAGNET AND
NEUTRON
DETECTOR

NEUTRON BEAM

© —LAMeR,

] ANTI LY/ ~neutron
DETECTOR

FIG. 1. Layout of experimental apparatus.

62% at 6 GeV and dropped to 45% at 2 GeV.

Corrections have been applied to the data
for angular bias in the spark chambers, mul-
tiple scattering in the hydrogen target, small-
angle cutoffs, and inelastic contamination.

The relative normalization between the differ-
ent settings was obtained by two sets of scin-
tillation counters which measured the scattered
charged-particle flux from the hydrogen tar-
get. No absolute normalization was available
from the experiment itself. We have normal-
ized the data by fitting the small-angle regions
with an exponential in #, the square of the four-
momentum transfer from the incident to the
scattered neutron, and by using the optical
theorem and the neutron-proton total cross
sections.® We took the real part of the forward-
scattering amplitude to be zero.®

For presentation we have grouped the events
into ranges of incident-neutron kinetic energy.
The data presented are based on 6219 elastic
events which represent about 15% of our avail-
able data. Figure 2 is a semilogarithmic plot
of the differential cross sections do/d|t| vs
[t [1t] is expressed in (GeV/c)?].

In terms of the center-of-mass scattering
angle 0* and the center-of-mass momentum
p*,

It =2p*2(1-cos6*)
and
do/d\t| =(n/p*®)do/dQ*.

The cross sections as a function of cos6* may
be computed from do/d |¢| using the average
values of p* for each incident energy range
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shown in Table I.
We first observe that,

FIG. 2. Neutron-proton differential cross sections versus |t].

as expected by our

general understanding of high-energy elastic

scattering in the presence of a large inelastic

cross section, there is a strong diffraction

peak at all energies. The peak has a roughly
exponential behavior.
We have fit the region 0.2< |#] <0.6 (GeV /c)?

with the form do/d|t| =A exp(b |¢]), and b is

given in Table I. According to recent data of
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Table I. Values of the slope of the diffraction peak
for each energy interval.

p* average
Incident kinetic (Momentum
energy range in center of mass) b
(GeV) (GeV/c) [(GeV/c) ™

1.0-2.0 0.851 —6.321 £0.647
2.0-3.0 1.096 —5.527+0.463
3.0-4.0 1.287 —6.655 +£0.432
4.0-5.0 1.460 —7.720 £0.411
5.0-6.3 1.612 —7.562+0.391

Clyde et al.,” the values of —b for proton-pro-
ton scattering at 2.2, 4.1, and 6.2 GeV are
6.50+0.03, 7.44+0.04, and 7.69+0.04 (GeV/
¢)™2. The neutron-proton and proton-proton
diffraction-peak slopes have about the same
values except perhaps at the lower energies.
The slopes in the energy region from 2 to 6
GeV indicate a shrinkage of the diffraction peak
quite similar to proton-proton scattering.

The following observations may be made on
the large-angle region. The differential cross
section deviates from exponential and begins
to flatten out as 6*=90° is approached. It is
roughly flat, that is, isotropic near 90°, and
the minimum in the differential cross section
is at or just beyond 90°. The isotropy near
90° is predicted both by the statistical model®
and by the model of Wu and Yang.® Beyond
90°, do/d|t| increases even though the values
of |f| are very large. This leads to the idea
that ¢ is no longer the meaningful parameter
because the neutron and proton are exchang-
ing their charges, and « (the square of four-
momentum transfer from the incident neutron
to the recoil proton) is the relevant parame-
ter. Since |u|=4p*%3-|t|, |ul| is decreasing
as 6* approaches 180°. In this experiment
we used a slightly different technique to mea-
sure the region near 180°, but that data are
not completely analyzed yet. Comparison with
other data'’? near 180° indicates that our dif-
ferential cross section will rise roughly mono-
tonically into the charge-exchange peak. How-
ever, in the backward-angle regions present-
ed in Fig. 2, d[In(do/d|u1)]/d|u| is about 0.6
(GeV/c)™2 compared to 40 or 50 (GeV/c)~
at 180°. - '

The statistical model predicts an exponen-
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tial decrease with the center-of-mass total
energy W* of the form (do/dQ¥*),,0=A exp(~-gW*).
We found g to be 3.73+0.38 (GeV)™!. If we

fit the decrease with a power of W*, namely
(do/dQ%) o=CW*"N | then N =11.04+1.15.
Finally, Clyde et al.” give the proton-proton
differential cross section at 90° as 0.45+0.01,
0.016+ 0.0009, and 0.000 78 +0.000 04 mb/(GeV/
c)? at 2.2, 4.1, and 6.2 GeV.! Interpolation

of our data yields 0.32+ 0.05, 0.017+0.0086,

and 0.0014 + 0.0008 mb/(GeV/c)? at these en-
ergies.

We find no clear evidence for a second for-
ward peak in the neutron-proton system. There
are some ambiguous indications as can be seen
from Fig. 2, which should be resolved when
the remainder of our data are analyzed.
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