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In a certain range of magnetic field, metals
for which the Ginzburg-Landau parameter k
is greater than 0.417 are superconducting on-
ly in regions close to the surface —we suppose
the field to be directed everywhere parallel
to the surface. Superconductors with x> 0.417
include both type-2 superconductors (k> 0.707)
for which this range of field extends from the
upper critical field of the mixed state (H )
up to the nucleation field for surface supercon-
ductivity (H.3), and the class of type-1 super-
conductor —-we shall call them type-1-2 super-
conductors —for which the range of field runs
from the thermodynamic critical field (H;) up
to Ho3 (0.417<k<0.707). The three critical
fields are related through k: Ho9=vV2kH,, H.3
=1.695H.9." In a cylindrical sample whose
axis is parallel to the field, the surface super-
conducting layer forms a hollow cylindrical
sheath. Persistent currents induced by the
magnetic field as it is changed, inevitably,
from one value to another during the measure-
ment of magnetization, at constant tempera-
ture, can be expected to flow in this sheath,
just as they do in a superconducting tube, and
to produce hysteresis effects in the magnetiza-
tion curve: A hysteretic tail is observed in
the magnetization curves of type-1-2272 and
type-2 superconductors*; hysteresis due to
surface currents is also found in the mixed
state of type-2 superconductors.® This type
of hysteresis can be distinguished from hys-
teresis caused in other ways by the form of
the minor hysteresis loops and its sensitivity
to surface condition. It is brought about be-
cause the component of magnetization I pro-
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duced by the induced surface currents is dia-
magnetic when the field is increasing and para-
magnetic when it is decreasing. Let us call

[I] the surface current magnetization M. See
Fig. 1(a).

Fink and Barnes® have recently pointed out
that we must expect M for a cylinder in a field
parallel to its length to depend on the radius
of the cylinder (R) and they have described
a method of calculating it. Fink has applied
the results of that paper to the calculation of
the real and imaginary part of the ac suscep-
tibility.” We have also calculated M, in the
same limit (R > 2/k, where A is the penetra-
tion depth), but by a different method which
avoids some of the approximations made by
Fink and Barnes; our results are in general
rather smaller than theirs, particularly for
low values of k¥ when the reduced field % is
small (z=Hq/H9 where H, is the applied field).
In this Letter we describe our calculation of
M and also our calculation, by a similar meth-
od, of the critical current of a foil carrying
a current.

We assume the Ginzburg-Landau equations
and the expression for the free energy from
whose minimization they may be derived, to
describe the behavior of our material. Sup-
pose the surface of the material to be the plane
x =0 and the surface current f: (0,7, 0) to be
everywhere normal to the field H = (0, 0, H(x)).
We choose a vector potential A= (0,4, 0) and
write the order parameter ¢ in the form

W/by=rx)e Y,

where ¥, is the order parameter in zero field,



VoLUME 16, NUMBER 26

PHYSICAL REVIEW LETTERS

27 JUNE 1966

f is a real function of ¥, and & is assumed to
be constant. Substituting in the Ginzburg-Lan-
dau equations we have two coupled equations
in fand a where a=A/H

1 dzf

- L )2 —f3 -
b dx? bla-d)*f+(f-f*)/h=0, (1)
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FIG. 1. (a) Hysteretic “tail” on the magnetization

curve I(Hy/H, o) for a long cylinder in a field H, paral-
lel to its length (Hy<H,g) in the range of field where

only the surface sheath is superconducting (schematic).

M=|I|. The origin of applied field is arbitrary.

(b) The curves represent schematically the variation
with surface current J of the two contributions to the
Gibbs free energy of a cylinder radius R: the “surface
contribution” Gg =2rRFg(J), and the “magnetic contri-
bution” G,, =1R%F,,(J). At the points of intersection
of the curves of Gy and =G J =Jc+ and JC", respec-
tively, and the free energy of the superconductor car-
rying a surface current J is equal to that of the nor-
mal state (carrying no current). It is assumed that the
two branches of the “tail” on the magnetization curve
correspond to J,* and J,~. J,," and J,,” are re-
ferred to in the text. Solutions of higher free energy
than Fg (Jm+) and Fg(J,, ) (the dashed curve) are un-
stable.

In these equations b =h/£2 where £ is the co-
herence length x/k and d=k3/h=k/b. 1t is
convenient to separate the Gibbs free energy

G (relative to the normal state) into two terms,
i.e.,, G=Gg5+Gy,. Gy, we shall refer to as the
magnetic contribution:

_ — (g _ 2 .
Gm_vamdv, where F, = (H-H )*/81; (3)

the integral is taken over the volume of the
specimen (v). Gg we shall call the surface
contribution:

— — 25,1/ 2 .
Gs —FSA, where Fs = §HC hY2p/4m; (4)

here, A is the surface area of the specimen
and ¢ is a number, obtained after f(x) has been
determined, from the following integration:

¢=J°°;(df{)dx)z_}_b(a__d)Zfz_fz(I;%fz) b”"’dx.
0

Equation (2) can be rewritten in terms of the
current density T

J= —H(5/2m\2)(a —d) f?
= -H (5b/27mk%h)(a-d) f2 A/cm?2, (5)

Integrating Eq. (1), by parts, with respect to

/ and combining the result with (5) using bound-
ary conditions df/dx=0 at x=0 and df/dx=f

=0 at x = the total surface current per un-

it width (J) can be related to f(0) and to the oth-
er parameters. We define a dimensionless
quantity Z by

J:Z(5Hc/nm/§) A/cm,

in terms of which
Z(1-Z /2x%h) = £2(0)/2n)[d%h + £2(0)/2-1].  (6)

This relation (6) is a generalization of an ear-
lier result which was valid only in the limit
of high «.®

In order to find an allowed solution to the
differential equations (1) and (2) for certain
chosen values of Z, &, b, and k, f(0) is var-
ied until numerical integration of the equations,
starting from x =0 (where we set df/dx=0,
a=0, da/dx=1) satisfies the condition f~0
and df/dx -0 as x —, The parameter d is
obtained from (6). In practice, using a digi-
tal computer for the integration, we have usu-
ally found df/dx <10~2 at x =5 to be an adequate
approximation to the boundary conditions as
x =, Close to H;, however (or close to H.q
for a type-2 superconductor), it is necessary
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to integrate to a larger value of x in order to
obtain an acceptable solution. In deciding what
is acceptable, we are guided by (among other
things) a comparison of our chosen value of
J with the value obtained for J by integrating
(5) using the computed values of f and a.

For any one of the solutions the surface con-
tribution to the free energy per unit area of
a plane surface (Fg) varies in the manner shown
schematically in Fig. 1(b). At each value of
the net surface current J there are usually two
allowed solutions; the one of lower free ener-
gy is stable —stable in the sense that the free
energy (whether the magnetic contribution is
included or not) increases with increasing J.
The other solution is unstable and will not con-
cern us here.

Consider now a semi-infinite cylinder in a
field applied parallel to its length. Our purpose
is to calculate the persistent-current magne-

tization M. We shall assume as Fink and Barnes®

did that in the “critical state,” when the max-
imum persistent current flows, the free-en-
ergy difference between superconducting and
normal states is G =0. If the radius of the
cylinder R is large compared with the thick-
ness of the superconducting sheath (R = 5¢&),
then we can use the value of Fg calculated for
a plane surface, with some confidence that

it will provide us with a good approximation
to the contribution of the surface to the free
energy of the cylinder. The surface layer oc-
cupies such a small proportion of the volume
that we may calculate the magnetic contribu-

tion Gy, by treating the surface current as though

it flowed in a region indefinitely thin. Thus,
M=J/10 emu,

— 2
Fm— (4mM)2/8m,

and, per unit length of cylinder,

G=7mR?*F (J)+2nRF (J).
m s

The critical current J,., corresponding to G
=0, is then given by

F_ (JC) = —%RFm(JC).

The points in which the curves Fg(J) and
-3RF,,(J) intersect determine the critical
currents for the two senses of circulation about
the axis of the cylinder, JCJr and Jc ~. However,
when R is large, |J "=~ 1J.~ |=d., J, is much
smaller in magnitude than J,,* or J,, [the
maximum surface currents for which solutions
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to (1) and (2) can be found], and Fg(J)~F(0)
(see Fig. 1). Consequently in the large-radi-
us limit the critical current J, is given by

Fm(JC)E —ZFS (0)/R. (7)

In terms of the magnetization M, (7) can now
be rewritten

4TM(R/2)VP/H = (<2020 /)=, (8)

where | is a parameter we shall need to re-
fer to.

In the limit of high k¥, ¢ becomes independent
of k and uVk is then a universal function of re-
duced field 2. It is plotted against % in Fig. 2
for several values of k, high as well as low.
Notice how slowly vk varies with k except
at low fields. In Fig. 3 we have plotted u for
a few values of « in order to compare our re-
sults with the results of Fink and Barnes® which
were presented as a plot of un against % (n
is a number ~1). For low values of kK a mag-
netic contribution to the surface free energy
for zero current cannot be neglected though
we have neglected it in the discussion above.

It has been included as a correction term add-
ed to @ in (8) for the calculation of the curves
in Figs. 2 and 3, and we have indicated in Fig. 3
how much difference this correction makes

to u (k) for one or two values of k.

Our results would appear to differ from those
of Fink and Barnes® as a result of several ap-
proximations they make which become partic-
ularly poor at low k and low 2. In particular
they neglect the minimization of free energy
with respect to the vector potential A [which

Ho /He

FIG. 2. The parameter uvk =4rM(R/2£)V? H, (where
R is the radius of cylinder and £ =A/k is the coherence
length) is plotted here against reduced field Ho/H.9
for several values of k.
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FIG. 3. Curves a: The parameter p =4nM(R/2))Y2
H, is plotted against reduced field for three values of
K. Curves b: The same, but omitting the magnetic con-
tribution to the surface free energy for zero current,
which was added to ¢ as a correction term in com-

puting curves a (see text). Curves c: The parameter
pn M ~1) calculated by Fink and Barnes® for the same
values of k as curves q and p.

leads to (2)].

When k> 0.707 it will be noticed that we have
presented results for p and uVk both above
and below H.9. Above H g the criterion for
the critical state G =0 seems a plausible one,
since our solutions describe states of the whole
material. Below H g they do not. We have
assumed, as in earlier calculations,®?® that
the surface solutions of the type described here
(f=0 as x~=) are approximately valid below
H 9 provided the field is near enough to H.9
for the average order parameter in the bulk
of the material, which is in the mixed state,
to be small. Since our solutions do not describe
the state of the whole material, we cannot now
expect G =0, calculated neglecting the existence
of the mixed state, to be the criterion for the
critical state even if it is the correct criteri-
on above H.9. The results below H, 9 must
therefore be taken as a first approximation
only.

Consider now the critical surface current
of a rectangular foil when only the surface is
superconducting and when the applied field H,
is parallel to the surface but normal to the cur-
rent—as it was assumed to be for the cylinder
in the calculation above. But suppose now that
the current is passed along the length of the
specimen from an external source. In an ear-
lier calculation® we had assumed that the crit-
ical current was equal to the maximum current

for which solutions to the Ginzburg-Landau
equations could be found (J,," or J,,” in Fig. 1).
These currents are at least an order of mag-
nitude higher than those generally observed,'°
and Fink and Barnes® have suggested that this
may be due to the omission of the field ener-
gy, and not just to the imperfections of real
surfaces. Here we adopt the same hypothesis
as we have used above: that the critical state
corresponds to G =0, the Gibbs free energy

in the superconducting state being calculated
relative to the normal state carrying no cur-
rent. We cannot justify this hypothesis since
the normal state in the presence of the current
is not in thermodynamic equilibrium, but we
use it as the best guess we can make at pres-
ent.

Now, whether the foil is normal or super-
conducting, if the total current per unit width
of foil is J A/cm, the field on one side of the
foil, assumed semi-infinite (except in thick-
ness t), is H,+ 2mJ/10, while on the other the
tield is H,~2mnJ/10. In the transition the field
changes inside the material, but not outside
it: In the surface superconducting state the
field inside is equal to H if both surfaces are
superconducting (and carry equal currents),
but H ,+ 21J /10 if only one surface is supercon-
ducting, while in the normal state the field
varies linearly across the thickness. In order
to calculate the magnetic contibution to the
free energy (3), we regard the superconduc-
tor as lying in the nonuniform field H, produced
in the normal state by the currents supplied
from external sources, one the specimen cur-
rent, the other the current to the magnet pro-
ducing H,. Thus, for example, when both sur-
faces are superconducting,

3t (H =H,)%dx -H ')de
“n=J,

per unit area of foil. We then have the results
that for a foil thick enough so that > &, if

J.(t) is the critical value of current per unit
width of superconducting surface for a foil thick-
ness t, and M(R) the value of M for the cylin-
der radius R,

Jc(t)z 10M(t/3) A/cm,
when both surfaces are superconducting; if

only one surface is superconducting (supercon-
ductivity having been destroyed on the other
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by some means such as copper plating),
Jc(t): 10M(2t/3) A/cm.
According to these results the critical surface

current of foils of a given material should vary
at a given field and temperature as vz,
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Longitudinal electric field modulation .of
reflectivity has proven to be a powerful tool
for investigating electronic band structure in
semiconductors.’»? In metals, the penetration
of the low-frequency (<100-Hz) electric field
was thought to be insufficient to produce an
observable change in reflectivity. Neverthe-
less, we have observed electric field modula-
tion of the reflectivity at a metal-electrolyte
interface in several metals.

According to recent theories,!>® electroreflec-
tance depends on the influence of the low-fre-
quency field on the energy bands, which causes
an oscillating singularity at critical points.®
The relative change in the reflectivity at these
singular-point energies should therefore depend
on the magnitude of the electric field inside the
solid within the penetration depth of the light.
Using an electrolyte method,*? it is possible
to obtain large fields at the sample surface
with small applied voltages because a dipole
layer is formed in the electrolyte at the inter-
face. The penetration of the low-frequency field
into the material is limited by the screening
of the free carriers. The Thomas-Fermi screen-
ing length for a static charge in an electron
gas is given as A*=8 p/6mne?, where n is the
carrier density, and 8 is the Fermi energy.

In semiconductors the screening length for the
nearly static field can be of the order of the
wavelength of the light, but in good conductors
the screening occurs within atomic dimensions
of the surface, leaving a field-free region in
the bulk of the metal. In copper, for example,
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the screening length A= 0.5X10™8 cm=~0.5 A.
The electric field should therefore have little
effect on the band structure at the depth that
is probed by the light which is of the order of
100 A. Despite these considerations, in the
metals examined to date, silver, gold, copper,
and the metallic-oxide sodium tungsten bronze,®
peaks in the electroreflectivity spectra have
been observed which are closely correlated
with structure in the reflectivity of each met-
al. The relative change in reflectivity at the
strong peaks was about 0.5% which is compar-
able with the electroreflectance structure ob-
served in semiconductors.?

The experimental arrangement is similar
to the electrolyte technique used for studying
semiconductors.? The metal sample is placed
in a fused-quartz cell at the entrance slit of
a single-pass Perkin-Elmer prism monochro-
mator and is illuminated by a 1600-W xenon
arc source. A 35-Hz modulating voltage of
about 2 V peak to peak is applied between the
sample and a platinum electrode which are
immersed in the KCl-water electrolyte. No
dc bias voltage was required. The detectors
used are photomultiplier tubes with responses
from about 1.3 to 6.0 eV. Most of the struc-
ture in the electroreflectance is observable
with moderate resolution, using slit widths
of 100 yx and a CaF, prism for the ultraviolet
or a glass prism for the visible spectrum.
The photomultiplier output detected at the
1000-Hz chopper frequency is kept constant
over the spectral range by a servo control



