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ZERO-SOUND EXCITATIONS IN He'
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It has recently been suggested by Pines' that
the low-momentum (phonon) excitations ob-
served" in the energy spectrum for liquid He4

correspond to zero-sound oscillations, which
are a complete analog, for a neutral system,
of the plasmons in an electron liquid. Thus,
the excitations closely resemble the zero-sound
oscillation proposed by Landau for Fermi liq-
uids, rather than ordinary first sound which
has been the previously accepted identification.

This interpretation for the phonon mode of
excitation was prompted by the inelastic-neu-
tron-scattering experiment in HeI and HeII
by Woods, ' who has shown that the velocity of
phonons with momentum 0.38 A ' is essential-
ly independent of temperature (a small increase
in velocity with temperature is actually observed)
for all temperatures less than 2.57'K. Further-
more, neither the energy nor the lifetime of
these excitations change appreciably on going
from He II to He I.

It seems, therefore, that the low-momentum
excitation energy in liquid helium is indepen-
dent of pz, the superfluid density. Pines has
noted that a very similar behavior is displayed
by an electron liquid where, for low momen-
ta, the plasmon excitation energy is unaffected
by the transition from the normal to the super-
conducting state and is independent of the super-
conducting density. For this case,

w(k)T» 1,

where ~(k) is the plasmon excitation energy

and T is its lifetime. The experiment by Woods
was carried out in this same "collisionless"
regime in which the restoring forces respon-
sible for the oscillating sound waves have a
very different character than do those respon-
sible for ordinary first sound.

To investigate the validity of this proposed
explanation for Woods's experimental results,
a detailed calculation of the energy spectrum
for densitylike fluctuations in a boson fluid
is carried out. The method of procedure is
completely analogous to the Pines-Bohm~ treat-
ment for the electron gas, and the results are
found to be in complete agreement with Pines's'
proposal.

The equation of motion for the density fluc-
tuation

is, for either boson or fermion systems,

P =-Q (k /2m+p k/m) a +a —k [ÃV(k)/m Jp

—m ' Q (k k')V(k')p p
krak

where ak and ak+ are the plane-wave annihila-
tion and creation operators, V(k) is the Fou-
rier transform of the two-body interaction po-
tential, and N is the total number of particles
per unit volume. The kinetic energy is

r =k'/2m,
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p +(u'(k)p =0, (3)

where h has been set equal to unity for conve-
nience. Within the random-phase approxima-
tion (RPA), the term which is nonlinear in the
density fluctuations may be neglected in Eq. (2).
This approximation corresponds to the neglect
of coupling between density fluctuations of dif-
ferent momenta, and it is therefore in concert
with the experiments2' which, for temperatures
less than 2.57'K, were performed in this "col-
lisionless" regime, where the mean time be-
tween collisions for the collective modes is
very large compared to their period of oscilla-
tion, i.e., for ~T» 1. The first term on the
right of Eq. (2) is associated with the random
kinetic motion of the individual particles in
the system, and for low-momentum excitations
it is expected to be very small. To the extent
that it may be neglected compared to the re-
maining potential-energy term in Eq. (2), the
equation of motion (with the RPA) shows that
the Fourier components of the particle density
behave as independent excitations of the sys-
tem, oscillating with circular frequency &u(k).

That is,

for all relevant momenta. Clearly then, only
to the extent that Eq. (5) is satisfied can pk
possibly be a satisfactory collective coordinate.

It is apparent that Eq. (4) gives, for the pho-
non velocity c, an expression that is indepen-
dent of the temperature and the superfluid den-
sity, which is substantially what has been ob-
served experimentally. However, it remains
to investigate the temperature range of validity
for the approximations leading to this result,
and to deduce the temperature-dependent cor-
rections to c, if any exist.

It can be shown, just as Pines and Bohm4
have done for the electron fluid, that the effect
of the random kinetic motion of individual par-
ticles is simply accounted for in a boson fluid.
The resulting expression for the excitation spec-
trum is'

(T k-T )
1=2V k N

p (u'(k) —(T T)"—
p+k p

where Np is the momentum distribution func-
tion. This equation can then be expanded in
powers of g provided g ( 1, and, to second
order, the result for ~(k) at low momenta is

where
~(k) = ck =k[NV(k)/m]'"

&u'(k) =elk'=2NV(k)T +3N 'Q (p k/m) N . (7)
k p
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(k'/2m + p k/rn)2,
( '(k) (5)

At low momenta, where V(k) is assumed to
be nearly constant, the quantity c is usually
associated with the first-sound velocity but
here it will be referred to only as the phonon
velocity for obvious reasons.

Just as in electron fluids, the RPA seems
to be a valid approximation for boson fluids
at low momenta. This is apparent from the
work of Feynmans who has shown that the ex-
cited states ik) = pk i 0) are approximate eigen-
states for liquid helium at low momenta, where
[0) is the ground-state wave function. This
result was established by showing that the de-
rived expression for the excitation spectrum
agrees with experiment for all momenta k ~ 0.6
0
A . For such eigenstates, it is an easy mat-
ter to show that, the equation of motion for py
must be of the form given by Eq. (3). There-
fore, the terms nonlinear in the density fluc-
tuation (RPA terms) must be of negligible im-
portance to the result. From Eqs. (2) and (4)
it is evident that the criterion for neglecting
the random kinetic motion of the individual par-
ticles in the equation of motion is that

By averaging over an isotropic momentum dis-
tribution, c becomes

c(e) = [NV(k)/m +2T.(6)/m]' ~, (8)

where Tf(8) is the average kinetic energy of
the individual particles and 6 is the tempera-
ture. This result is very interesting because
it shows that the depletion of particles in the
single-particle zero-momentum state leads to
increased (not decreased) excitation energies,
which is contrary to the predictions of other
theories" but is in accord with the experimen-
tal work of Woods.

For finite temperatures, the kinetic energy
of the individual particles is derived not only
from the interparticle interactions but also
from thermal excitations. Actually, T;(6) is
the only temperature-dependent quantity in the
expression for the phonon velocity c. The con-
stant quantity NV(k)/m in Eq. (8) is not direct-
ly calculable because the interaction potential
for He is not precisely known for small inter-
atomic separations, where it is strongly re-
pulsive. As a result, its Fourier transform
cannot be accurately evaluated. However, this
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difficulty is avoided in calculating the change,
with respect to temperature, of the phonon
velocity. That is, the quantity b.c(8) = c(8)-c(0)
=AT&(8)/mc(0) is directly determined from
bT&(8) = Tf(8)-T~(0), where c(0) is taken to be
the accepted experimental value of the phonon
velocity extrapolated to O'K. An approximate
expression for b, T;(8) is obtained from the ideal
boson-gas model, which may be expected to
yield a reasonable estimate for the change of
individual particle kinetic energies with tem-
perature, especially for values of 6I on the or-
der of or greater than 0+, the lambda temper-
ature. These expressions are'

&1' (8) =-'k8(8/8 )"'[t(-')/t (-')]

T (8) 2k8[1 0 4618(8 /8)sn
i

—0.0226(8 /8)3- ~ ~ ], 8&8

(9)

(10)
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FIG. 1. Change of the phonon velocity with tempera-
ture, for liquid helium at normal vapor pressure. The
dots represent the experimental results and the solid
line represents our theoretical prediction.

The $'s are the Riemann zeta functions, k is
Boltzmann's constant, and 8+ =2.19 K for He4.

For c(0) =239 m/sec, and with Eqs. (9) and

(10), the values of b.c(8) are calculated and
presented in Fig. 1. The points represent the
known experimental results" and the solid
line represents our theoretical prediction.
It is apparent that this theory correctly pre-
dicts the temperature dependence for the pho-
non velocity over the entire range of tempera-
tures up to and including 2.57'K.

The strength of the parameter g may be shown

to represent a rough measure of the coupling
between the individual particles and the collec-
tive excitations. As a result, the collective
modes can exist as independent excitations only

if g is small compared with unity. Therefore,
in order to establish the validity of our results
for all temperatures of interest, it is neces-
sary to examine the change with temperature
of g . For small excitation momenta, g re-
duces to

g' = (p k/m)'/(u'(k),

and it is apparent that Eq. (5) is then satisfied
provided

c(8)» V. ,2'

where v~ =p/m is the average velocity of the
individual particles. That is, the system pos-
sesses a phonon mode of excitation only if the
zero-sound velocity c is large compared to
the velocities of the individual particles. Even
though this condition may be met at O'K, for
sufficiently large temperatures v; becomes
comparable to c. In fact, for 8=2.57'K, Eq. (10)
shows that Vi= 0.22c, and for temperatures ap-
proaching 4.2'K, Eq. (11) is no longer even

approximately satisfied. As a result, the pho-
nonlike collective modes no longer exist as
well-defined independent excitations for tem-
peratures approaching 4.2'K. This prediction
agrees well with the experiment of Woods where
it is found that, at 8 =4.2 K, the phonon-exci-
tation line is so broad that it is no longer dis-
cernable as an observed excitation.

It appears, therefore, that if Eq. (11) holds

at 8 =O'K, it also holds over a considerable
range of temperatures; that is, approximately
for 0 + 8 & 4.2'K, but not at higher temperatures.
Also note that g' is less strongly dependent on

temperature for large rather than for small
momentum transfers. Thus, thermal broaden-
ing begins to play, for small momentum trans-
fers, a more important role at lower temper-
atures, as pointed out by Pines.

In conclusion, we find that the properties
associated with the excitation spectrum for
densitylike fluctuations in liquid helium are
completely consistent with Woods's experimen-
tal results and that these results are also in

agreement with the proposal by Pines-that
these excitations should more appropriately
be associated with zero-sound oscillations in
the "collisionless" regime for which ~T» 1,
rather than with ordinary sound for which uT

~D. Pines, International Symposium on Quantum Flu-
ids, University of Sussex, 16-20 August 1965 (to be pub-
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90n the basis of this theory, one would expect that

lim [NV(k)/m+2T. (0)/m] = lim jNV(k)/m]
k 0

2
A, -o

= c(0) =239 m/see

for He II, which is the value for c(0) to which we have
normalized our data. The commonly used phenomeno-
logical potentials for helium cannot be expected to
yield this value for the phonon velocity because they
do not adequately represent the interaction for values
of r significantly smaller than the equilibrium inter-
atomic separation, nor are they intended to. For ex-
ample, the familiar 6-12 potential does not even pos-

sess a Fourier transform because of its highly singu-
lar character at small x, a very unphysical character-
istic. However, based on work in progress, we have
shown that it is possible to impose a constraint on the
phenomenologieal potential so that the correct experi-
mental value is realized for c(0), and the resulting po-
tential V(x) still agrees with experimental data to with-
in 5' in the vicinity of the equilibrium interatomic
separation and at large interatomic separations, which
are the only regions where the potential is well known

anyway. Thus, it is not unlikely that our results are
compatible with known experimental data for V(x) and
that all that is required for a complete treatment is a
more realistic form for the potential at small r.

There is, however, another possible interpretation
for the quantitative success of this theory. That is,
we have in effect actually chosen an effective potential
Veff= V(k), where Veff is such as to yield the ob-
served phonon velocity c(0). This is equivalent to
arguing that the short-range correlations which are
neglected in the RPA are such as to change V(k) from
being simply the Fourier transform of V(r) to that of
an effective potential Veff. As to which interpretation
is the more eorreet, it remains to be seen.

F. London, Superfluids (John Wiley 5 Sons, Inc. ,
New York, 1950), p. 47.
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Several authors» 5 have reported experiments
on the scattering of laser light from electrons
in a laboratory plasma. The profiles of the
scattered light show a nearly Gaussian distri-
bution, indicating little or no collective effect
between the ions and the electrons. It is of
interest to observe this collective effect, on

the one hand to verify the theory'~' which pre-
dicts satellite peaks approximately at the plas-
ma frequency, and on the other hand to develop
a useful technique for the diagnostics of plas-
mas. This paper reports an observation of the
scattering of light from a pulsed ruby laser by
a plasma jet. The profile of the scattered light
shows unambiguously the distinct satellite peaks
on both sides of the central frequency, indicat-
ing strong collective effects between the ions
and the electrons.

A plasma jet is used because it is fairly sim-
ple to obtain a reproducible plasma with an
electron density of 10 to 10 cm and an
electron temperature of 1 or 2 eV. These

conditions make it possible to observe the
satellites at a scattering angle of 45 . It is
much easier to reduce the stray light when

making observations at this large angle as
compared to small forward-scattering angles.
In addition, since the jet is operated at atmo-
spheric pressure, we need no windows or walls
in the neighborhood of the plasma.

The jet is mounted vertically. It draws 280 A
at 1. 5 V from a battery and rheostat power sup-
ply. The diameter of the jet nozzle is 5 mm.
The flow of the argon gas is controlled at a
steady velocity of 15 m sec

A TRG giant-pulse ruby laser, with peak
power of 10 MW and a pulse duration of 50 nsec,
is used. The light from the laser is focused
onto a pinhole, and this is then focused with
a second lens at the center of the plasma. The
light from the laser is monitored with a photo-
diode. Suitable light baffling and light traps
are provided so that the stray light being re-
flected into the detector system is less than


